Enhancing Online Action Detection: Addressing Common Challenges via LSTR with Improved Modeling

Min Hang Hsu*, Chen Chien Hsu, Cheng Kai Lu, Shao Kang Huang

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

摘要

Most online action detection methods focus on solving a K+1 classification problem, where the additional category represents the 'background' class. However, training the 'background' class and dealing with data imbalance during training are common challenges in online action detection. To address these challenges, we propose an effective model to mitigate the negative effects by incorporating an additional pathway between the feature extractor and action identification model Furthermore, we present two configurations for retaining the feature distinctions and supporting the final decision of the Long Short-Term Transformer (LSTR), aiming to enhance its performance in the K+1 classification. Experimental results show that the proposed method achieves an accuracy of 71% in mean average precision (mAP) on the Thumos 14 dataset, outperforming the 69.5% achieved by the original LSTR method.

原文英語
主出版物標題2024 IEEE International Conference on Consumer Electronics, ICCE 2024
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9798350324136
DOIs
出版狀態已發佈 - 2024
事件2024 IEEE International Conference on Consumer Electronics, ICCE 2024 - Las Vegas, 美国
持續時間: 2024 1月 62024 1月 8

出版系列

名字Digest of Technical Papers - IEEE International Conference on Consumer Electronics
ISSN(列印)0747-668X
ISSN(電子)2159-1423

會議

會議2024 IEEE International Conference on Consumer Electronics, ICCE 2024
國家/地區美国
城市Las Vegas
期間2024/01/062024/01/08

ASJC Scopus subject areas

  • 工業與製造工程
  • 電氣與電子工程

指紋

深入研究「Enhancing Online Action Detection: Addressing Common Challenges via LSTR with Improved Modeling」主題。共同形成了獨特的指紋。

引用此