Enhancement of isobutane refrigerator performance by using far-infrared coating

Yu Chun Hsu, Tun Ping Teng*


研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)


This study evaluated the effect on refrigeration performance and feasibility of a far-infrared coating (FIRC) on the condenser of a small isobutane (R-600a) refrigerator. The evaluation was based on the no-load pull-down and 24-h on-load cycling tests. Far-infrared materials and a water-based coating material were mixed using a two-step synthesis method to obtain the FIRC material. Fourier transform infrared spectrometry established that the optimal far-infrared material was a multiwalled carbon nanotube (MWCNT). The results of the no-load pull-down test revealed that the electricity consumption, freezer temperature, and coefficient of performance (COP) of the R-600a refrigerator with MWCNT-FIRC (S2) were lower than those of the refrigerator without MWCNT-FIRC (S1) by 3.39%, 3.61%, and 2.92%, respectively. The results of the 24-h on-load cycling test showed that S2 had a lower electricity consumption, higher slope of pull-down (SPD), higher compression ratio (CR), higher COP, lower duty ratio (DR), and higher energy factor (EF), changing upon those of S1 by −7.05%, 5.66%, 3.24%, 5.92%, −5.63, and 7.89%, respectively. A MWCNT-FIRC on the condenser of an R-600a refrigerator can enhance refrigeration performance and reduce electricity consumption, resulting in energy saving and carbon reduction.

頁(從 - 到)20-27
期刊Energy Conversion and Management
出版狀態已發佈 - 2016 11月 15

ASJC Scopus subject areas

  • 可再生能源、永續發展與環境
  • 核能與工程
  • 燃料技術
  • 能源工程與電力技術


深入研究「Enhancement of isobutane refrigerator performance by using far-infrared coating」主題。共同形成了獨特的指紋。