Enhanced visual odometry algorithm based on elite selection method and voting system

Hao Shen, Chen Chien Hsu, Wei Yen Wang, Yin Tien Wang

研究成果: 書貢獻/報告類型會議論文篇章

1 引文 斯高帕斯(Scopus)

摘要

In this paper, we address the problems of camera pose estimation accuracy and runtime efficiency by incorporating an elite selection method and a voting system to a conventional visual odometry (VO) method, called the 'enhanced VO algorithm'. The use of elite selection method improves the efficiency of perspective-3-point (P3P) algorithm by only employing an elite subset of landmarks to estimate the camera pose. The proposed voting system, on the other hand, provides reliable consensus set derived from random sample consensus (RANSAC) algorithm such that accuracy of camera pose estimations can be increased. To verify the performances of the proposed approach, we conducted various experiments using a Kinect RGB-D sensor, and the results show that the proposed VO system performs well in terms of not only estimation accuracy but also computational time.

原文英語
主出版物標題2017 IEEE 7th International Conference on Consumer Electronics - Berlin, ICCE-Berlin 2017
發行者IEEE Computer Society
頁面99-100
頁數2
ISBN(電子)9781509040148
DOIs
出版狀態已發佈 - 2017 12月 14
事件7th IEEE International Conference on Consumer Electronics - Berlin, ICCE-Berlin 2017 - Berlin, 德国
持續時間: 2017 9月 32017 9月 6

出版系列

名字IEEE International Conference on Consumer Electronics - Berlin, ICCE-Berlin
2017-September
ISSN(列印)2166-6814
ISSN(電子)2166-6822

其他

其他7th IEEE International Conference on Consumer Electronics - Berlin, ICCE-Berlin 2017
國家/地區德国
城市Berlin
期間2017/09/032017/09/06

ASJC Scopus subject areas

  • 電氣與電子工程
  • 工業與製造工程
  • 媒體技術

指紋

深入研究「Enhanced visual odometry algorithm based on elite selection method and voting system」主題。共同形成了獨特的指紋。

引用此