摘要
We investigate the energy gap variation as well as spin-orbit coupling (SOC) integrals between various low-lying singlet and triplet excited states for a series of fluorescein derivatives. We find that when the electron-donating property of the substituent group on the benzene moiety of fluorescein is gradually increased, the charge transfer states are lowered in energy and a mixing with nearby ππ* or nπ* states occurs, which causes a twisting in the p orbital on the carbonyl group and a non-zero SOC integral between the originally non-coupled 1ππ* and 3ππ* states. We also find an enhancement of about 3–4 times in the SOC integrals upon sulfur substitution for the oxygen in the carbonyl groups, and that with substantial energy lowering in ππ* and especially in nπ* states, the SOC between the S1 state with energetically close triplet states is also increased significantly, signifying the possibility of enhanced phosphorescence or thermally-delayed fluorescence emission.
原文 | 英語 |
---|---|
頁(從 - 到) | 311-317 |
頁數 | 7 |
期刊 | Organic Electronics |
卷 | 39 |
DOIs | |
出版狀態 | 已發佈 - 2016 12月 1 |
ASJC Scopus subject areas
- 電子、光磁材料
- 生物材料
- 一般化學
- 凝聚態物理學
- 材料化學
- 電氣與電子工程