Energy-saving variable bias current optimization for magnetic bearing using adaptive differential evolution

Syuan Yi Chen*, Min Han Song

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

2 引文 斯高帕斯(Scopus)

摘要

This study proposes an adaptive differential evolution (ADE)-based variable bias current control strategy to improve the energy efficiency of an active magnetic bearing (AMB) system. In the AMB system, the drive current is composed of a control current and a superimposed bias current in which the former is controlled by an external controller used to regulate the rotor position while the latter is set as a pre-designed constant used to improve the linearity and dynamic performance. Generally, the bias current causes power loss even if no force is required. In this regard, the ADE-based variable bias current control strategy is proposed to minimize the energy consumption of the AMB control system without altering the control performance. Experimental results demonstrate the high-accuracy control and significant energy saving performances of the proposed method. The energy improvements compared to baseline were 20.24% and 17.65% for the operation periods of 10 s and 50 s, respectively.

原文英語
主出版物標題Advances in Swarm Intelligence - 8th International Conference, ICSI 2017, Proceedings
編輯Ying Tan, Hideyuki Takagi, Yuhui Shi
發行者Springer Verlag
頁面466-474
頁數9
ISBN(列印)9783319618234
DOIs
出版狀態已發佈 - 2017
事件8th International Conference on Swarm Intelligence, ICSI 2017 - Fukuoka, 日本
持續時間: 2017 7月 272017 8月 1

出版系列

名字Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10385 LNCS
ISSN(列印)0302-9743
ISSN(電子)1611-3349

其他

其他8th International Conference on Swarm Intelligence, ICSI 2017
國家/地區日本
城市Fukuoka
期間2017/07/272017/08/01

ASJC Scopus subject areas

  • 理論電腦科學
  • 電腦科學(全部)

指紋

深入研究「Energy-saving variable bias current optimization for magnetic bearing using adaptive differential evolution」主題。共同形成了獨特的指紋。

引用此