TY - JOUR
T1 - Endpoint L1 estimates for Hodge systems
AU - Hernandez, Felipe
AU - Raiță, Bogdan
AU - Spector, Daniel
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2023/4
Y1 - 2023/4
N2 - Let d≥ 2. In this paper we give a simple proof of the endpoint Besov-Lorentz estimate ‖IαF‖B˙d/(d-α),10,1(Rd;Rk)≤C‖F‖L1(Rd;Rk)for all F∈ L1(Rd; Rk) which satisfy a first order cocancelling differential constraint, where α∈ (0 , d) and Iα is a Riesz potential. We show how this implies endpoint Besov–Lorentz estimates for Hodge systems with L1 data via fractional integration for exterior derivatives.
AB - Let d≥ 2. In this paper we give a simple proof of the endpoint Besov-Lorentz estimate ‖IαF‖B˙d/(d-α),10,1(Rd;Rk)≤C‖F‖L1(Rd;Rk)for all F∈ L1(Rd; Rk) which satisfy a first order cocancelling differential constraint, where α∈ (0 , d) and Iα is a Riesz potential. We show how this implies endpoint Besov–Lorentz estimates for Hodge systems with L1 data via fractional integration for exterior derivatives.
UR - http://www.scopus.com/inward/record.url?scp=85127268732&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127268732&partnerID=8YFLogxK
U2 - 10.1007/s00208-022-02383-y
DO - 10.1007/s00208-022-02383-y
M3 - Article
AN - SCOPUS:85127268732
SN - 0025-5831
VL - 385
SP - 1923
EP - 1946
JO - Mathematische Annalen
JF - Mathematische Annalen
IS - 3-4
ER -