Efficient Arnoldi-type algorithms for rational eigenvalue problems arising in fluid-solid systems

So Hsiang Chou*, Tsung Ming Huang, Wei Qiang Huang, Wen Wei Lin

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

6 引文 斯高帕斯(Scopus)

摘要

We develop and analyze efficient methods for computing damped vibration modes of an acoustic fluid confined in a cavity with absorbing walls capable of dissipating acoustic energy. The discretization in terms of pressure nodal finite elements gives rise to a rational eigenvalue problem. Numerical evidence shows that there are no spurious eigenmodes for such discretization and also confirms that the discretization based on nodal pressures is much more efficient than that based on Raviart-Thomas finite elements for the displacement field. The trimmed linearization method is used to linearize the associated rational eigenvalue problem into a generalized eigenvalue problem (GEP) of the form Ax=λBx. For solving the GEP we apply Arnoldi algorithm to two different types of single matrices B-1A and AB-1. Numerical accuracy shows that the application of Arnoldi on AB-1 is better than that on B-1A.

原文英語
頁(從 - 到)2189-2206
頁數18
期刊Journal of Computational Physics
230
發行號5
DOIs
出版狀態已發佈 - 2011 3月 1

ASJC Scopus subject areas

  • 數值分析
  • 建模與模擬
  • 物理與天文學(雜項)
  • 一般物理與天文學
  • 電腦科學應用
  • 計算數學
  • 應用數學

指紋

深入研究「Efficient Arnoldi-type algorithms for rational eigenvalue problems arising in fluid-solid systems」主題。共同形成了獨特的指紋。

引用此