Effective Noise-Aware Data Simulation For Domain-Adaptive Speech Enhancement Leveraging Dynamic Stochastic Perturbation

Chien Chun Wang*, Li Wei Chen, Hung Shin Lee, Berlin Chen, Hsin Min Wang

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

1 引文 斯高帕斯(Scopus)

摘要

Cross-domain speech enhancement (SE) is often faced with severe challenges due to the scarcity of noise and background information in an unseen target domain, leading to a mismatch between training and test conditions. This study puts forward a novel data simulation method to address this issue, leveraging noise-extractive techniques and generative adversarial networks (GANs) with only limited target noisy speech data. Notably, our method employs a noise encoder to extract noise embeddings from target-domain data. These embeddings aptly guide the generator to synthesize utterances acoustically fitted to the target domain while authentically preserving the phonetic content of the input clean speech. Furthermore, we introduce the notion of dynamic stochastic perturbation, which can inject controlled perturbations into the noise embeddings during inference, thereby enabling the model to generalize well to unseen noise conditions. Experiments on the VoiceBank-DEMAND benchmark dataset demonstrate that our domain-adaptive SE method outperforms an existing strong baseline based on data simulation.

原文英語
主出版物標題Proceedings of 2024 IEEE Spoken Language Technology Workshop, SLT 2024
發行者Institute of Electrical and Electronics Engineers Inc.
頁面309-316
頁數8
ISBN(電子)9798350392258
DOIs
出版狀態已發佈 - 2024
事件2024 IEEE Spoken Language Technology Workshop, SLT 2024 - Macao, 中国
持續時間: 2024 12月 22024 12月 5

出版系列

名字Proceedings of 2024 IEEE Spoken Language Technology Workshop, SLT 2024

會議

會議2024 IEEE Spoken Language Technology Workshop, SLT 2024
國家/地區中国
城市Macao
期間2024/12/022024/12/05

ASJC Scopus subject areas

  • 電腦視覺和模式識別
  • 硬體和架構
  • 媒體技術
  • 儀器
  • 語言和語言學

指紋

深入研究「Effective Noise-Aware Data Simulation For Domain-Adaptive Speech Enhancement Leveraging Dynamic Stochastic Perturbation」主題。共同形成了獨特的指紋。

引用此