Dopant diffusion and activation in silicon nanowires fabricated by ex situ doping: A correlative study via atom-probe tomography and scanning tunneling spectroscopy

Zhiyuan Sun, Ori Hazut, Bo Chao Huang, Ya Ping Chiu*, Chia Seng Chang, Roie Yerushalmi, Lincoln J. Lauhon, David N. Seidman

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

33 引文 斯高帕斯(Scopus)

摘要

Dopants play a critical role in modulating the electric properties of semiconducting materials, ranging from bulk to nanoscale semiconductors, nanowires, and quantum dots. The application of traditional doping methods developed for bulk materials involves additional considerations for nanoscale semiconductors because of the influence of surfaces and stochastic fluctuations, which may become significant at the nanometer-scale level. Monolayer doping is an ex situ doping method that permits the post growth doping of nanowires. Herein, using atom-probe tomography (APT) with subnanometer spatial resolution and atomic-ppm detection limit, we study the distributions of boron and phosphorus in ex situ doped silicon nanowires with accurate control. A highly phosphorus doped outer region and a uniformly boron doped interior are observed, which are not predicted by criteria based on bulk silicon. These phenomena are explained by fast interfacial diffusion of phosphorus and enhanced bulk diffusion of boron, respectively. The APT results are compared with scanning tunneling spectroscopy data, which yields information concerning the electrically active dopants. Overall, comparing the information obtained by the two methods permits us to evaluate the diffusivities of each different dopant type at the nanowire oxide, interface, and core regions. The combined data sets permit us to evaluate the electrical activation and compensation of the dopants in different regions of the nanowires and understand the details that lead to the sharp p-i-n junctions formed across the nanowire for the ex situ doping process.

原文英語
頁(從 - 到)4490-4500
頁數11
期刊Nano Letters
16
發行號7
DOIs
出版狀態已發佈 - 2016 7月 13

ASJC Scopus subject areas

  • 生物工程
  • 化學 (全部)
  • 材料科學(全部)
  • 凝聚態物理學
  • 機械工業

指紋

深入研究「Dopant diffusion and activation in silicon nanowires fabricated by ex situ doping: A correlative study via atom-probe tomography and scanning tunneling spectroscopy」主題。共同形成了獨特的指紋。

引用此