Dimension estimate of polynomial growth harmonic forms

Jui Tang Ray Chen, Chiung Jue Anna Sung

研究成果: 雜誌貢獻期刊論文同行評審

3 引文 斯高帕斯(Scopus)

摘要

Let Hpl (M) be the space of polynomial growth harmonic forms. We proved that the dimension of such spaces must be finite and can be estimated if the metric is uniformly equivalent to one with a nonnegative curvature operator. In particular, this implies that the space of harmonic forms of fixed growth order on the Euclidean space with any periodic metric must be finite dimensional.

原文英語
頁(從 - 到)167-183
頁數17
期刊Journal of Differential Geometry
73
發行號1
DOIs
出版狀態已發佈 - 2006
對外發佈

ASJC Scopus subject areas

  • 分析
  • 代數與數理論
  • 幾何和拓撲

指紋

深入研究「Dimension estimate of polynomial growth harmonic forms」主題。共同形成了獨特的指紋。

引用此