Dimension estimate of harmonic forms on complete manifolds

Jui Tang Ray Chen*, Chiung Jue Anna Sung

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

3 引文 斯高帕斯(Scopus)

摘要

We consider the space of polynomial-growth harmonic forms. We prove that the dimension of such spaces must be finite and can be estimated if the metric is uniformly equivalent to one with asymptotically nonnegative curvature operator. This implies that the space of harmonic forms of polynomial growth order on the connected sum manifolds with nonnegative curvature operator must be finite-dimensional, which generalizes work of Tam.

原文英語
頁(從 - 到)91-109
頁數19
期刊Pacific Journal of Mathematics
232
發行號1
DOIs
出版狀態已發佈 - 2007 9月
對外發佈

ASJC Scopus subject areas

  • 數學(全部)

指紋

深入研究「Dimension estimate of harmonic forms on complete manifolds」主題。共同形成了獨特的指紋。

引用此