Depth-based feature extraction-guided automatic identification tracking of steel products for smart manufacturing in steel 4.0

Chao Yung Hsu, Li Wei Kang, Hsin Yi Lin, Ru Hong Fu, Chih Yang Lin, Ming Fang Weng, Duan Yu Chen

研究成果: 書貢獻/報告類型會議論文篇章

10 引文 斯高帕斯(Scopus)

摘要

To achieve smart manufacturing in Industry 4.0 for steel industry, a smart steel manufacturing framework is considered in this paper, where an automatic identification tracking method for steel products is developed. Existing approaches usually rely on marking or embedding a series of identification codes on the steel surfaces. However, steel-making is usually processed under a very high temperature environment, making it difficult to well embed the identification codes with acceptable quality for further online processing. Therefore, this paper presents a vision-based automatic identification tracking method without needing to embed any identification codes onto the steel product surfaces. The key is to use the essential identity of a steel product without extrinsic information embedded, achieved by extracting visual features from the steel image. Our preliminary results have verified the efficiency of the proposed method.

原文英語
主出版物標題Proceedings of 4th IEEE International Conference on Applied System Innovation 2018, ICASI 2018
編輯Artde Donald Kin-Tak Lam, Stephen D. Prior, Teen-Hang Meen
發行者Institute of Electrical and Electronics Engineers Inc.
頁面145-146
頁數2
ISBN(電子)9781538643426
DOIs
出版狀態已發佈 - 2018 6月 22
對外發佈
事件4th IEEE International Conference on Applied System Innovation, ICASI 2018 - Chiba, 日本
持續時間: 2018 4月 132018 4月 17

出版系列

名字Proceedings of 4th IEEE International Conference on Applied System Innovation 2018, ICASI 2018

會議

會議4th IEEE International Conference on Applied System Innovation, ICASI 2018
國家/地區日本
城市Chiba
期間2018/04/132018/04/17

ASJC Scopus subject areas

  • 電腦網路與通信
  • 硬體和架構
  • 能源工程與電力技術
  • 控制與系統工程
  • 機械工業
  • 控制和優化
  • 建模與模擬
  • 生物醫學工程

指紋

深入研究「Depth-based feature extraction-guided automatic identification tracking of steel products for smart manufacturing in steel 4.0」主題。共同形成了獨特的指紋。

引用此