Delay-induced mixed-mode oscillations in a 2D hindmarsh-rose-type model

Shyan Shiou Chen, Chang Yuan Cheng

研究成果: 雜誌貢獻文章

1 引文 斯高帕斯(Scopus)

摘要

In this study, we investigate a Hindmarsh-Rose-type model with the structure of recurrent neural feedback. The number of equilibria and their stability for the model with zero delay are reviewed first. We derive condi- tions for the existence of a Hopf bifurcation in the model and derive equations for the direction and stability of the bifurcation with delay as the bifurcation parameter. The ranges of parameter values for the existence of a Hopf bifurca- tion and the system responses with various levels of delay are obtained. When a Hopf bifurcation due to delay occurs, canard-like mixed-mode oscillations (MMOs) are produced at the parameter value for which either the fold bifur- cation of cycles or homoclinic bifurcation occurs in the system without delay. This behavior can be found in a planar system with delay but not in a planar system without delay. Therefore, the results of this study will be helpful for determining suitable parameters to represent MMOs with a simple system with delay.

原文英語
頁(從 - 到)37-53
頁數17
期刊Discrete and Continuous Dynamical Systems - Series B
21
發行號1
DOIs
出版狀態已發佈 - 2016 一月

    指紋

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

引用此