Deep Sea Water-Dissolved Organic Matter Intake Improves Hyperlipidemia and Inhibits Thrombus Formation and Vascular Inflammation in High-Fat Diet Hamsters

Chia Chun Wu, Yu Hsuan Cheng, Kuo Hsin Chen*, Chiang Ting Chien*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

3 引文 斯高帕斯(Scopus)

摘要

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease caused by oxidative stress, inflammation and lipid deposition within liver cells, and is subsequently contributing to cardiovascular diseases such as atherosclerosis. Deep sea water (DSW) is characterized by its clearance and abundant nutrients with antioxidant and anti-inflammatory activity to confer therapeutic poten-tial. We aimed to explore the therapeutic capability of our prepared multi-filtration DSW-dissolved organic matter (DSW-DOM) on high-fat diet-induced hyperlipidemia and endothelial dysfunction in hamsters. A high-fat/high-cholesterol diet led to increased oxidative stress, including blood reactive oxygen species (ROS), plasma malondialdehyde (MDA) and hepatic CYP2E1 expression; an increased hyperlipidemic profile and SREBP 1-mediated fatty liver; promoted NFκB p65-mediated hepatic inflammation; triggered PARP-mediated hepatic apoptosis; and enhanced endothelial intercellular adhesion molecule-1 (ICAM-1) and von Willebrand factor (VWF)-mediated atherosclerosis associated with the depressed hepatic antioxidant Paraoxonase 1 (PON1) expression. The DSW-DOM-enriched 1295 fraction, with strong H2 O2 scavenging activity, efficiently reduced several oxidative stress parameters, the lipid profile, inflammation, and apoptosis, possibly through the PON1-mediated antioxidant capability. Furthermore, DSW-DOM treatment significantly decreased the endothelial ICAM-1 and VWF expression, subsequently leading to the elongation of time to occlusion of FeCl3-induced arterial thrombosis and to the inhibition of FeCl3-induced fluorescent platelet adhesion to mesentery arterioles in the high-fat diet. Based on the above results, our data suggest that DSW-DOM intake via antioxidant defense mechanisms confers protective effects against high-fat diet-enhanced, oxidative stress-mediated hyperlipidemia, and endothelial dysfunction evoked atherosclerosis by downregulating oxidative injury, lipogenesis, inflammation and apoptosis.

原文英語
文章編號82
期刊Life
12
發行號1
DOIs
出版狀態已發佈 - 2022 1月

ASJC Scopus subject areas

  • 生態學、進化論、行為學與系統學
  • 生物化學、遺傳與分子生物學 (全部)
  • 空間與行星科學
  • 古生物學

指紋

深入研究「Deep Sea Water-Dissolved Organic Matter Intake Improves Hyperlipidemia and Inhibits Thrombus Formation and Vascular Inflammation in High-Fat Diet Hamsters」主題。共同形成了獨特的指紋。

引用此