Deep Reinforcement-Learning Based Power and Beamforming Coordination for IoT Underlying 5G Networks

Chiapin Wang*, Cheng Lin Hsieh, Han Chi Gao

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

1 引文 斯高帕斯(Scopus)

摘要

When the Internet of Things (IoT) is employed for Device-to-Device (D2D) communications that underlies 5G cellular networks, cross-tier interferences is introduced without suitable coordination between cellular users and D2D communications. In this study, a power and beamforming coordination method is proposed based on deep reinforcement learning to reduce cross-tier interferences between cellular users and D2D communications to increase the overall network utility. Results from simulation show that the proposed scheme efficiently increases the total system utility for IoT underlying 5G cellular networks when compared with other existing schemes.

原文英語
主出版物標題2021 IEEE International Conference on Electronic Communications, Internet of Things and Big Data, ICEIB 2021
編輯Teen-Hang Meen
發行者Institute of Electrical and Electronics Engineers Inc.
頁面20-22
頁數3
ISBN(電子)9781665437554
DOIs
出版狀態已發佈 - 2021
事件2021 IEEE International Conference on Electronic Communications, Internet of Things and Big Data, ICEIB 2021 - Yilan, 臺灣
持續時間: 2021 12月 102021 12月 12

出版系列

名字2021 IEEE International Conference on Electronic Communications, Internet of Things and Big Data, ICEIB 2021

會議

會議2021 IEEE International Conference on Electronic Communications, Internet of Things and Big Data, ICEIB 2021
國家/地區臺灣
城市Yilan
期間2021/12/102021/12/12

ASJC Scopus subject areas

  • 電腦網路與通信
  • 電腦科學應用
  • 硬體和架構
  • 資訊系統
  • 資訊系統與管理
  • 安全、風險、可靠性和品質

指紋

深入研究「Deep Reinforcement-Learning Based Power and Beamforming Coordination for IoT Underlying 5G Networks」主題。共同形成了獨特的指紋。

引用此