Deep Learning-Enabled Holographic Tomography: Cell Morphology Analysis and Diagnosis

Chau Jern Cheng*, Chung Hsuan Huang, Han Wen Chi, Hui Ching Chang, Han Yen Tu

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

摘要

The work describes deep learning-enabled holographic tomography for neuroblastoma cell processing, analysis, and diagnosis through three-dimensional (3-D) cell refractive index (RI) model. Deep learning-assisted approach is applied to execute effective segmentation of 3-D RI cell morphology for the different cellular states under normal, autophagy, and apoptosis. The biophysical parameters of 3-D RI cell morphology are analyzed and selected for learning-based classification to identify cell death pathways. The results show that the proposed approach achieve of 98% in identifying cell morphology through optimized biophysical parameters.

原文英語
主出版物標題Optical Methods for Inspection, Characterization, and Imaging of Biomaterials VI
編輯Pietro Ferraro, Demetri Psaltis, Simonetta Grilli
發行者SPIE
ISBN(電子)9781510664531
DOIs
出版狀態已發佈 - 2023
事件Optical Methods for Inspection, Characterization, and Imaging of Biomaterials VI 2023 - Munich, 德国
持續時間: 2023 6月 262023 6月 29

出版系列

名字Proceedings of SPIE - The International Society for Optical Engineering
12622
ISSN(列印)0277-786X
ISSN(電子)1996-756X

會議

會議Optical Methods for Inspection, Characterization, and Imaging of Biomaterials VI 2023
國家/地區德国
城市Munich
期間2023/06/262023/06/29

ASJC Scopus subject areas

  • 電子、光磁材料
  • 凝聚態物理學
  • 電腦科學應用
  • 應用數學
  • 電氣與電子工程

指紋

深入研究「Deep Learning-Enabled Holographic Tomography: Cell Morphology Analysis and Diagnosis」主題。共同形成了獨特的指紋。

引用此