摘要
Action recognition has gained great attention in automatic video analysis, greatly reducing the cost of human resources for smart surveillance. Most methods, however, focus on the detection of only one action event for a single person in a well-segmented video, rather than the recognition of multiple actions performed by more than one person at the same time for an untrimmed video. In this paper, we propose a deep learning-based multiple-person action recognition system for use in various real-time smart surveillance applications. By capturing a video stream of the scene, the proposed system can detect and track multiple people appearing in the scene and subsequently recognize their actions. Thanks to high resolution of the video frames, we establish a zoom-in function to obtain more satisfactory action recognition results when people in the scene become too far from the camera. To further improve the accuracy, recognition results from inflated 3D ConvNet (I3D) with multiple sliding windows are processed by a nonmaximum suppression (NMS) approach to obtain a more robust decision. Experimental results show that the proposed method can perform multiple-person action recognition in real time suitable for applications such as long-term care environments.
原文 | 英語 |
---|---|
文章編號 | 4758 |
頁(從 - 到) | 1-17 |
頁數 | 17 |
期刊 | Sensors (Switzerland) |
卷 | 20 |
發行號 | 17 |
DOIs | |
出版狀態 | 已發佈 - 2020 9月 1 |
ASJC Scopus subject areas
- 分析化學
- 資訊系統
- 生物化學
- 原子與分子物理與光學
- 儀器
- 電氣與電子工程