Decoherence of Topological Qubit in Linear Motions: Decoherence Impedance, Anti-Unruh and Information Backflow

Pei Hua Liu, Feng Li Lin

研究成果: 雜誌貢獻會議論文同行評審

摘要

In this work we study the decoherence of topological qubits in linear motions. The topological qubit is made of two spatially-separated Majorana zero modes which are the edge excitations of Kitaev chain [1]. In a previous work [2], it was shown by one of us and his collaborators that the decoherence of topological qubit is exactly solvable, moreover, topological qubit is robust against decoherence in the super-Ohmic environments. We extend the setup of [2] to consider the effect of motions on the decoherence of the topological qubits. Our results show the thermalization as expected by Unruh effect. Besides, we also find the so-called "anti-Unruh" phenomena which shows the rate of decoherence is anti-correlated with the acceleration in short-time scale. Moreover, we modulate the motion patterns of each Majorana modes and find information backflow and the preservation of coherence even with nonzero accelerations. This is the characteristics of the underlying non-Markovian reduced dynamics. We conclude that he topological qubit is in general more robust against decoherence than the usual qubits, and can be take into serious consideration for realistic implementation to have robust quantum computation and communication. This talk is based on our work in [3].

原文英語
文章編號012012
期刊Journal of Physics: Conference Series
883
發行號1
DOIs
出版狀態已發佈 - 2017 八月 24
事件6th IF+YITP International Symposium on Superstring Theory, the Quantum Theory of Fields, Gravity, Cosmology, and Related Topics - Phitsanulok, 泰国
持續時間: 2016 八月 32016 八月 5

ASJC Scopus subject areas

  • Physics and Astronomy(all)

指紋 深入研究「Decoherence of Topological Qubit in Linear Motions: Decoherence Impedance, Anti-Unruh and Information Backflow」主題。共同形成了獨特的指紋。

引用此