TY - GEN
T1 - DANCER
T2 - Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
AU - Wang, Yi Cheng
AU - Wang, Hsin Wei
AU - Yan, Bi Cheng
AU - Lin, Chi Han
AU - Chen, Berlin
N1 - Publisher Copyright:
© 2024 ELRA Language Resource Association: CC BY-NC 4.0.
PY - 2024
Y1 - 2024
N2 - End-to-end automatic speech recognition (E2E ASR) systems often suffer from mistranscription of domain-specific phrases, such as named entities, sometimes leading to catastrophic failures in downstream tasks. A family of fast and lightweight named entity correction (NEC) models for ASR have recently been proposed, which normally build on phonetic-level edit distance algorithms and have shown impressive NEC performance. However, as the named entity (NE) list grows, the problems of phonetic confusion in the NE list are exacerbated; for example, homophone ambiguities increase substantially. In view of this, we proposed a novel Description Augmented Named entity Cor-rEctoR (dubbed DANCER), which leverages entity descriptions to provide additional information to facilitate mitigation of phonetic confusion for NEC on ASR transcription. To this end, an efficient entity description augmented masked language model (EDA-MLM) comprised of a dense retrieval model is introduced, enabling MLM to adapt swiftly to domain-specific entities for the NEC task. A series of experiments conducted on the AISHELL-1 and Homophone datasets confirm the effectiveness of our modeling approach. DANCER outperforms a strong baseline, the phonetic edit-distance-based NEC model (PED-NEC), by a character error rate (CER) reduction of about 7% relatively on AISHELL-1 for named entities. More notably, when tested on Homophone that contains named entities of high phonetic confusion, DANCER offers a more pronounced CER reduction of 46% relatively over PED-NEC for named entities. The code is available at https://github.com/Amiannn/Dancer.
AB - End-to-end automatic speech recognition (E2E ASR) systems often suffer from mistranscription of domain-specific phrases, such as named entities, sometimes leading to catastrophic failures in downstream tasks. A family of fast and lightweight named entity correction (NEC) models for ASR have recently been proposed, which normally build on phonetic-level edit distance algorithms and have shown impressive NEC performance. However, as the named entity (NE) list grows, the problems of phonetic confusion in the NE list are exacerbated; for example, homophone ambiguities increase substantially. In view of this, we proposed a novel Description Augmented Named entity Cor-rEctoR (dubbed DANCER), which leverages entity descriptions to provide additional information to facilitate mitigation of phonetic confusion for NEC on ASR transcription. To this end, an efficient entity description augmented masked language model (EDA-MLM) comprised of a dense retrieval model is introduced, enabling MLM to adapt swiftly to domain-specific entities for the NEC task. A series of experiments conducted on the AISHELL-1 and Homophone datasets confirm the effectiveness of our modeling approach. DANCER outperforms a strong baseline, the phonetic edit-distance-based NEC model (PED-NEC), by a character error rate (CER) reduction of about 7% relatively on AISHELL-1 for named entities. More notably, when tested on Homophone that contains named entities of high phonetic confusion, DANCER offers a more pronounced CER reduction of 46% relatively over PED-NEC for named entities. The code is available at https://github.com/Amiannn/Dancer.
KW - automatic speech recognition
KW - domain adaption
KW - masked language model
KW - named entity correction
KW - nearest neighbor language model
UR - http://www.scopus.com/inward/record.url?scp=85195969110&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85195969110&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85195969110
T3 - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
SP - 4333
EP - 4342
BT - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
A2 - Calzolari, Nicoletta
A2 - Kan, Min-Yen
A2 - Hoste, Veronique
A2 - Lenci, Alessandro
A2 - Sakti, Sakriani
A2 - Xue, Nianwen
PB - European Language Resources Association (ELRA)
Y2 - 20 May 2024 through 25 May 2024
ER -