TY - JOUR
T1 - Core-log integration studies in hole-A of Taiwan Chelungpu-fault Drilling Project
AU - Wu, Yun Hao
AU - Yeh, En Chao
AU - Dong, Jia Jyun
AU - Kuo, Li Wei
AU - Hsu, Jui Yu
AU - Hung, Jih Hao
PY - 2008
Y1 - 2008
N2 - Taiwan Chelungpu-fault Drilling Project (TCDP) was initiated to understand the physical mechanisms involved in the large displacements of the 1999 Taiwan Chi-Chi earthquake. Continuous measurements of cores (including laboratory work) and a suite of geophysical downhole logs, including P- and S-wave sonic velocity, gamma ray, electrical resistivity, density, temperature, electrical borehole images and dipole-shear sonic imager, were acquired in Hole-A over the depth of 500-2003 m. Integrated studies of cores and logs facilitate qualitative and quantitative comparison of subsurface structures and physical properties of rocks. A total of 10 subunits were divided on the basis of geophysical characteristics. Generally, formation velocity and temperature increase with depth as a result of the overburden and thermal gradient, respectively. Gamma ray, resistivity, formation density, shear velocity anisotropy and density-derived porosity are primarily dependent on the lithology. Zones with changes of percentage of shear wave anisotropy and the fast shear polarization azimuth deduced from Dipole Shear-Imager (DSI) are associated with the appearance of fractures, steep bedding and shear zones. The fast shear wave azimuth is in good agreement with overall dip of the bedding (approximately 30° towards SE) and maximum horizontal compressional direction, particularly in the Kueichulin Formation showing strong shear wave velocity anisotropy. Bedding-parallel fractures are prevalent within cores, whereas minor sets of high-angle, NNW-SSE trending with N- and S-dipping fractures are sporadically distributed. The fault zone at depth 1111 m (FZA1111) is the Chi-Chi earthquake slip zone and could be a fluid conduit after the earthquake. The drastic change in fast shear wave polarization direction across the underlying, non-active Sanyi thrust at depth 1710 m reflects changes in stratigraphy, physical properties and structural geometry.
AB - Taiwan Chelungpu-fault Drilling Project (TCDP) was initiated to understand the physical mechanisms involved in the large displacements of the 1999 Taiwan Chi-Chi earthquake. Continuous measurements of cores (including laboratory work) and a suite of geophysical downhole logs, including P- and S-wave sonic velocity, gamma ray, electrical resistivity, density, temperature, electrical borehole images and dipole-shear sonic imager, were acquired in Hole-A over the depth of 500-2003 m. Integrated studies of cores and logs facilitate qualitative and quantitative comparison of subsurface structures and physical properties of rocks. A total of 10 subunits were divided on the basis of geophysical characteristics. Generally, formation velocity and temperature increase with depth as a result of the overburden and thermal gradient, respectively. Gamma ray, resistivity, formation density, shear velocity anisotropy and density-derived porosity are primarily dependent on the lithology. Zones with changes of percentage of shear wave anisotropy and the fast shear polarization azimuth deduced from Dipole Shear-Imager (DSI) are associated with the appearance of fractures, steep bedding and shear zones. The fast shear wave azimuth is in good agreement with overall dip of the bedding (approximately 30° towards SE) and maximum horizontal compressional direction, particularly in the Kueichulin Formation showing strong shear wave velocity anisotropy. Bedding-parallel fractures are prevalent within cores, whereas minor sets of high-angle, NNW-SSE trending with N- and S-dipping fractures are sporadically distributed. The fault zone at depth 1111 m (FZA1111) is the Chi-Chi earthquake slip zone and could be a fluid conduit after the earthquake. The drastic change in fast shear wave polarization direction across the underlying, non-active Sanyi thrust at depth 1710 m reflects changes in stratigraphy, physical properties and structural geometry.
KW - Earthquake source observations
KW - Seismicity and tectonics
UR - http://www.scopus.com/inward/record.url?scp=50649086610&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=50649086610&partnerID=8YFLogxK
U2 - 10.1111/j.1365-246X.2008.03841.x
DO - 10.1111/j.1365-246X.2008.03841.x
M3 - Article
AN - SCOPUS:50649086610
SN - 0956-540X
VL - 174
SP - 949
EP - 965
JO - Geophysical Journal International
JF - Geophysical Journal International
IS - 3
ER -