Control of trion-to-exciton conversion in monolayer WS2 by orbital angular momentum of light

Rahul Kesarwani, Kristan Bryan Simbulan, Teng De Huang, Yu Fan Chiang, Nai Chang Yeh*, Yann Wen Lan, Ting Hua Lu

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

摘要

Controlling the density of exciton and trion quasiparticles in monolayer two-dimensional (2D) materials at room temperature by nondestructive techniques is highly desired for the development of future optoelectronic devices. Here, the effects of different orbital angular momentum (OAM) lights on monolayer tungsten disulfide at both room temperature and low temperatures are investigated, which reveal simultaneously enhanced exciton intensity and suppressed trion intensity in the photoluminescence spectra with increasing topological charge of the OAM light. In addition, the trion-to-exciton conversion efficiency is found to increase rapidly with the OAM light at low laser power and decrease with increasing power. Moreover, the trion binding energy and the concentration of unbound electrons are estimated, which shed light on how these quantities depend on OAM. A phenomenological model is proposed to account for the experimental data. These findings pave a way toward manipulating the exciton emission in 2D materials with OAM light for optoelectronic applications.

原文英語
文章編號0100
期刊Science Advances
8
發行號13
DOIs
出版狀態已發佈 - 2022 4月

ASJC Scopus subject areas

  • 多學科

指紋

深入研究「Control of trion-to-exciton conversion in monolayer WS2 by orbital angular momentum of light」主題。共同形成了獨特的指紋。

引用此