摘要
Linear motors (LMs) are widely used in numerous industry automation where precise and fast motions are required to convert electric energy into linear actuation without the need of any switching mechanism. This study aims to develop a control strategy of auto-tuning cross-coupled two-degree-of-freedom proportional-integral-derivative (ACC2PID) to achieve extremely high-precision contour control of a LMs-driven X-Y-Y stage. Three 2PID controllers are developed to control the mover positions in individual axes while two compensators are designed to eliminate the contour errors in biaxial motions. Furthermore, an improved artificial bee colony algorithm is employed as a powerful optimization technique so that all the control parameters can be concurrently evaluated and optimized online while ensuring the non-fragility of the proposed controller. In this way, the tracking error in each axis and contour errors of the biaxial motions can be concurrently minimized, and further, satisfactory positioning accuracy and synchronization performance can be achieved. Finally, the experimental comparison results confirm the validity of the proposed ACC2PID control system regarding the multi-axis contour tracking control of the highly uncertain and nonlinear LMs-driven X-Y-Y stage.
原文 | 英語 |
---|---|
文章編號 | 9036 |
頁(從 - 到) | 1-22 |
頁數 | 22 |
期刊 | Applied Sciences (Switzerland) |
卷 | 10 |
發行號 | 24 |
DOIs | |
出版狀態 | 已發佈 - 2020 12月 2 |
ASJC Scopus subject areas
- 一般材料科學
- 儀器
- 一般工程
- 製程化學與技術
- 電腦科學應用
- 流體流動和轉移過程