Concept Identification Visualizer (CIV) using Knowledge Tracing

Hui Jun Huang, I. Wei Lai

研究成果: 書貢獻/報告類型會議論文篇章

摘要

The COVID-19 pandemic has resulted in an escalation in the demand for online learning, leading to the need for experts, such as experienced math teachers, to classify exercises. However, achieving accurate and effective classification may present challenges due to differing expert opinions and complex exercise concepts. To address this challenge, we propose the use of the Concept Identification Visualizer (CIV). The CIV tool assists experts who lack engineering programming knowledge in comprehending the exercises and evaluating student responses. The tool leverages Knowledge Tracing to extract relevant information from students' answers and presents this data in a visual format. By providing a more comprehensive understanding of the exercises, the experts enable more informed exercise classification based on student feedback and improve the overall effectiveness of online learning.

原文英語
主出版物標題2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
頁面41-42
頁數2
ISBN(電子)9798350324174
DOIs
出版狀態已發佈 - 2023
事件2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Pingtung, 臺灣
持續時間: 2023 7月 172023 7月 19

出版系列

名字2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings

會議

會議2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023
國家/地區臺灣
城市Pingtung
期間2023/07/172023/07/19

ASJC Scopus subject areas

  • 人工智慧
  • 人機介面
  • 資訊系統
  • 資訊系統與管理
  • 電氣與電子工程
  • 媒體技術
  • 儀器

指紋

深入研究「Concept Identification Visualizer (CIV) using Knowledge Tracing」主題。共同形成了獨特的指紋。

引用此