Computing the full spectrum of large sparse palindromic quadratic eigenvalue problems arising from surface Green's function calculations

Tsung Ming Huang*, Wen Wei Lin, Heng Tian, Guan Hua Chen

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

2 引文 斯高帕斯(Scopus)

摘要

Full spectrum of a large sparse ⊤-palindromic quadratic eigenvalue problem (⊤-PQEP) is considered arguably for the first time in this article. Such a problem is posed by calculation of surface Green's functions (SGFs) of mesoscopic transistors with a tremendous non-periodic cross-section. For this problem, general purpose eigensolvers are not efficient, nor is advisable to resort to the decimation method etc. to obtain the Wiener–Hopf factorization. After reviewing some rigorous understanding of SGF calculation from the perspective of ⊤-PQEP and nonlinear matrix equation, we present our new approach to this problem. In a nutshell, the unit disk where the spectrum of interest lies is broken down adaptively into pieces small enough that they each can be locally tackled by the generalized ⊤-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm with suitable shifts and other parameters, and the eigenvalues missed by this divide-and-conquer strategy can be recovered thanks to the accurate estimation provided by our newly developed scheme. Notably the novel non-equivalence deflation is proposed to avoid as much as possible duplication of nearby known eigenvalues when a new shift of G⊤SHIRA is determined. We demonstrate our new approach by calculating the SGF of a realistic nanowire whose unit cell is described by a matrix of size 4000×4000 at the density functional tight binding level, corresponding to a 8×8nm2 cross-section. We believe that quantum transport simulation of realistic nano-devices in the mesoscopic regime will greatly benefit from this work.

原文英語
頁(從 - 到)340-355
頁數16
期刊Journal of Computational Physics
356
DOIs
出版狀態已發佈 - 2018 3月 1

ASJC Scopus subject areas

  • 數值分析
  • 建模與模擬
  • 物理與天文學(雜項)
  • 一般物理與天文學
  • 電腦科學應用
  • 計算數學
  • 應用數學

指紋

深入研究「Computing the full spectrum of large sparse palindromic quadratic eigenvalue problems arising from surface Green's function calculations」主題。共同形成了獨特的指紋。

引用此