Comparison of NMOSFET and PMOSFET devices that combine CESL stressor and SiGe channel

H. W. Hsu, H. S. Huang, C. C. Lee, S. Y. Chen, H. H. Teng, M. R. Peng, M. C. Wang, Chuan-Hsi Liu

研究成果: 雜誌貢獻文章

6 引文 斯高帕斯(Scopus)

摘要

Strained-Si technology could enhance the carrier mobility and improve the device performance. Contact-etch-stop-layer (CESL) structure with different stress and SiGe channel was fabricated with 90-nm technology. The electrical properties of N and PMOSFET devices combining CESL and SiGe channel were investigated. The short channel effects (SCE), such as drain-induced barrier lowering (DIBL), were also studied. Moreover, the stress contour in the SiGe channel has been simulated with TCAD to understand the relationship between stress distribution and device performance for different CESL structures. It is observed that the stress in the channel region was independent of the type of N or PMOSFET devices, but it was dependent on the CESL type and channel length. Based on the experimental and simulation results, it is confirmed that the device performance is associated with the stress in the channel, and the approach of CESL stressor and SiGe channel is shown to effectively improve the mobility of NMOSFETs and PMOSFETs.

原文英語
頁(從 - 到)8127-8132
頁數6
期刊Journal of Nanoscience and Nanotechnology
13
發行號12
DOIs
出版狀態已發佈 - 2013 十二月 1

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Biomedical Engineering
  • Materials Science(all)
  • Condensed Matter Physics

指紋 深入研究「Comparison of NMOSFET and PMOSFET devices that combine CESL stressor and SiGe channel」主題。共同形成了獨特的指紋。

  • 引用此

    Hsu, H. W., Huang, H. S., Lee, C. C., Chen, S. Y., Teng, H. H., Peng, M. R., Wang, M. C., & Liu, C-H. (2013). Comparison of NMOSFET and PMOSFET devices that combine CESL stressor and SiGe channel. Journal of Nanoscience and Nanotechnology, 13(12), 8127-8132. https://doi.org/10.1166/jnn.2013.8209