CdSe/ZnS QD@CNT nanocomposite photocathode for improvement on charge overpotential in photoelectrochemical Li-O2 batteries

Vediyappan Veeramani, Yu Hsiang Chen, Hung Chia Wang, Tai Feng Hung, Wen Sheng Chang, Da Hua Wei*, Shu Fen Hu, Ru Shi Liu

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

13 引文 斯高帕斯(Scopus)

摘要

Li-ion batteries play a significant role in portable electronic devices in the running world. However, the limited energy density still needs to be improved for the growing future. Hence, we developed a photocathode nanocomposite material composed of Cadmium Selenide/Zinc Sulfide Quantum Dots with Carbon nanotube (CdSe/ZnS QD@CNT) for an efficient and tunable performance of the photoelectrochemical Li–O2 battery system to overcome the key issue of overpotential. The QD and CNT networks can provide efficient transportation paths of the electron–hole pairs and the O2 gas and lithium ions, respectively. The charging voltage of the photoelectrode is 2.65–4.0 V; therefore, decreased overpotential was due to efficient oxidation of Li2O2 by photoexcited electron–hole pairs by using QDs, resulting in a long-term operational stability over 100 cycles. On the basis of the advantages, the QDs exhibit efficient potential in Li–O2 batteries.

原文英語
頁(從 - 到)235-240
頁數6
期刊Chemical Engineering Journal
349
DOIs
出版狀態已發佈 - 2018 十月 1

ASJC Scopus subject areas

  • 化學 (全部)
  • 環境化學
  • 化學工程 (全部)
  • 工業與製造工程

指紋

深入研究「CdSe/ZnS QD@CNT nanocomposite photocathode for improvement on charge overpotential in photoelectrochemical Li-O<sub>2</sub> batteries」主題。共同形成了獨特的指紋。

引用此