Capacitary maximal inequalities and applications

You Wei Benson Chen, Keng Hao Ooi, Daniel Spector*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

摘要

In this paper we introduce capacitary analogues of the Hardy-Littlewood maximal function, MCf(x):=supr>0⁡[Formula presented] ∫B(x,r)|f|dC, for C= the Hausdorff content or a Riesz capacity. For these maximal functions, we prove a strong-type (p,p) bound for 1<p≤+∞ on the capacitary integration spaces Lp(C) and a weak-type (1,1) bound on the capacitary integration space L1(C). We show how these estimates clarify and improve the existing literature concerning maximal function estimates on capacitary integration spaces. As a consequence, we deduce correspondingly stronger differentiation theorems of Lebesgue-type, which in turn, by classical capacitary inequalities, yield more precise estimates concerning Lebesgue points for functions in Sobolev spaces.

原文英語
文章編號110396
期刊Journal of Functional Analysis
286
發行號12
DOIs
出版狀態已發佈 - 2024 6月 15

ASJC Scopus subject areas

  • 分析

指紋

深入研究「Capacitary maximal inequalities and applications」主題。共同形成了獨特的指紋。

引用此