TY - JOUR
T1 - Calculated Effects of Formaldehyde Substituents on Proton Transfer in (H2CO–H–OCX2)+
AU - Chu, Chih Hung
AU - Ho, Jia Jen
PY - 1995
Y1 - 1995
N2 - In quantum-chemical calculations with full geometry optimization of the energetics of proton-bridged complexes (H2CO–H–OCX2)+, in which X = H, F, Cl, and CH3, we used a polarized split-valence basis set 4-31G* with fourth-order Moller–Plesset perturbation theory (MP4) treatment for electron correlation. The presence of a fluorine substituent decreases the proton affinity of oxygen; formyl fluoride is more acidic than formaldehyde by 13–15 kcal/mol. In contrast, the methyl group in acetaldehyde increases the proton affinity of oxygen; acetaldehyde is more basic than formaldehyde by about 12 kcal/mol. The proton-transfer potentials for halogen-substituted complexes contain a single minimum corresponding to (H2COH+ · · ·OCHX), whereas an asymmetric double-well potential was found in methyl-substituted complexes; the global minimum energy corresponds to the conformation (H2CO· · ·+HOCHCH3). Proton transfer proceeds with greater difficulty in fluoro-substituted complexes than in the nonsubstituted complex, whereas with much greater ease in methyl-substituted counterparts. Substituted complexes are less stable than nonsubstituted ones; the binding energies are smaller by about 3–5 kcal/mol, regardless of the nature of the substituents. The structures of the complexes vary greatly with the substituents and their positions. They are further analyzed in regard to the direction of the dipole moment of the subunit in the complexes. The transition structures in the proton-transfer potentials all have the central proton on the O–O axis, but the location depends on the type of substituent.
AB - In quantum-chemical calculations with full geometry optimization of the energetics of proton-bridged complexes (H2CO–H–OCX2)+, in which X = H, F, Cl, and CH3, we used a polarized split-valence basis set 4-31G* with fourth-order Moller–Plesset perturbation theory (MP4) treatment for electron correlation. The presence of a fluorine substituent decreases the proton affinity of oxygen; formyl fluoride is more acidic than formaldehyde by 13–15 kcal/mol. In contrast, the methyl group in acetaldehyde increases the proton affinity of oxygen; acetaldehyde is more basic than formaldehyde by about 12 kcal/mol. The proton-transfer potentials for halogen-substituted complexes contain a single minimum corresponding to (H2COH+ · · ·OCHX), whereas an asymmetric double-well potential was found in methyl-substituted complexes; the global minimum energy corresponds to the conformation (H2CO· · ·+HOCHCH3). Proton transfer proceeds with greater difficulty in fluoro-substituted complexes than in the nonsubstituted complex, whereas with much greater ease in methyl-substituted counterparts. Substituted complexes are less stable than nonsubstituted ones; the binding energies are smaller by about 3–5 kcal/mol, regardless of the nature of the substituents. The structures of the complexes vary greatly with the substituents and their positions. They are further analyzed in regard to the direction of the dipole moment of the subunit in the complexes. The transition structures in the proton-transfer potentials all have the central proton on the O–O axis, but the location depends on the type of substituent.
UR - http://www.scopus.com/inward/record.url?scp=0000831816&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000831816&partnerID=8YFLogxK
U2 - 10.1021/ja00108a025
DO - 10.1021/ja00108a025
M3 - Article
AN - SCOPUS:0000831816
SN - 0002-7863
VL - 117
SP - 1076
EP - 1082
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 3
ER -