Caffeic acid and cinnamic acid ameliorate glucose metabolism via modulating glycogenesis and gluconeogenesis in insulin-resistant mouse hepatocytes

Da Wei Huang, Szu Chuan Shen*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

48 引文 斯高帕斯(Scopus)

摘要

Tumour necrosis factor-α (TNF-α) plays a pivotal role in cellular insulin resistance and can induce insulin resistance in mouse FL83B hepatocytes. Caffeic acid and cinnamic acid were found to improve glucose uptake in TNF-α-treated insulin-resistant mouse FL83B hepatocytes. The mechanism of glucose metabolism by caffeic acid and cinnamic acid was further investigated. The result from Western blot analysis revealed that caffeic acid and cinnamic acid increased expression of glycogen synthase, whereas the expression of glycogen synthase kinase and phosphorylation of glycogen synthase at Ser641 in insulin-resistant mouse hepatocytes was decreased. Caffeic acid and cinnamic acid suppressed the expression of hepatic nuclear factor-4 in TNF-α-treated mouse FL83B hepatocytes. The activity of phosphoenolpyruvate carboxykinase was also inhibited. Thus, caffeic acid and cinnamic acid ameliorated glucose metabolism by promoting glycogenesis and inhibiting gluconeogenesis in TNF-α-treated insulin-resistant mouse hepatocytes.

原文英語
頁(從 - 到)358-366
頁數9
期刊Journal of Functional Foods
4
發行號1
DOIs
出版狀態已發佈 - 2012 一月

ASJC Scopus subject areas

  • 食品科學
  • 醫藥(雜項)
  • 營養與營養學

指紋

深入研究「Caffeic acid and cinnamic acid ameliorate glucose metabolism via modulating glycogenesis and gluconeogenesis in insulin-resistant mouse hepatocytes」主題。共同形成了獨特的指紋。

引用此