TY - GEN
T1 - Building a TOCFL learner corpus for Chinese grammatical error diagnosis
AU - Lee, Lung Hao
AU - Tseng, Yuen Hsien
AU - Chang, Li Ping
N1 - Publisher Copyright:
© LREC 2018 - 11th International Conference on Language Resources and Evaluation. All rights reserved.
PY - 2019
Y1 - 2019
N2 - This study describes the construction of a TOCFL learner corpus and its usage for Chinese grammatical error diagnosis. We collected essays from the Test Of Chinese as a Foreign Language (TOCFL) and annotated grammatical errors using hierarchical tagging sets. Two kinds of error classifications were used simultaneously to tag grammatical errors. The first capital letter of each error tags denotes the coarse-grained surface differences, while the subsequent lowercase letters denote the fine-grained linguistic categories. A total of 33,835 grammatical errors in 2,837 essays and their corresponding corrections were manually annotated. We then used the Standard Generalized Markup Language to format learner texts and annotations along with learners' accompanying metadata. Parts of the TOCFL learner corpus have been provided for shared tasks on Chinese grammatical error diagnosis. We also investigated systems participating in the shared tasks to better understand current achievements and challenges. The datasets are publicly available to facilitate further research. To our best knowledge, this is the first annotated learner corpus of traditional Chinese, and the entire learner corpus will be publicly released.
AB - This study describes the construction of a TOCFL learner corpus and its usage for Chinese grammatical error diagnosis. We collected essays from the Test Of Chinese as a Foreign Language (TOCFL) and annotated grammatical errors using hierarchical tagging sets. Two kinds of error classifications were used simultaneously to tag grammatical errors. The first capital letter of each error tags denotes the coarse-grained surface differences, while the subsequent lowercase letters denote the fine-grained linguistic categories. A total of 33,835 grammatical errors in 2,837 essays and their corresponding corrections were manually annotated. We then used the Standard Generalized Markup Language to format learner texts and annotations along with learners' accompanying metadata. Parts of the TOCFL learner corpus have been provided for shared tasks on Chinese grammatical error diagnosis. We also investigated systems participating in the shared tasks to better understand current achievements and challenges. The datasets are publicly available to facilitate further research. To our best knowledge, this is the first annotated learner corpus of traditional Chinese, and the entire learner corpus will be publicly released.
KW - Computer-assisted language learning
KW - Grammatical error diagnosis
KW - Interlanguage analysis
KW - Second language acquisition
UR - http://www.scopus.com/inward/record.url?scp=85059909333&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059909333&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85059909333
T3 - LREC 2018 - 11th International Conference on Language Resources and Evaluation
SP - 2298
EP - 2304
BT - LREC 2018 - 11th International Conference on Language Resources and Evaluation
A2 - Isahara, Hitoshi
A2 - Maegaard, Bente
A2 - Piperidis, Stelios
A2 - Cieri, Christopher
A2 - Declerck, Thierry
A2 - Hasida, Koiti
A2 - Mazo, Helene
A2 - Choukri, Khalid
A2 - Goggi, Sara
A2 - Mariani, Joseph
A2 - Moreno, Asuncion
A2 - Calzolari, Nicoletta
A2 - Odijk, Jan
A2 - Tokunaga, Takenobu
PB - European Language Resources Association (ELRA)
T2 - 11th International Conference on Language Resources and Evaluation, LREC 2018
Y2 - 7 May 2018 through 12 May 2018
ER -