Buchsbaum-Rim multiplicities as Hilbert-Samuel multiplicities

C. Y. Jean Chan, Jung Chen Liu, Bernd Ulrich

研究成果: 雜誌貢獻文章

3 引文 斯高帕斯(Scopus)

摘要

We study the Buchsbaum-Rim multiplicity br (M) of a finitely generated module M over a regular local ring R of dimension 2 with maximal ideal m. The module M under consideration is of finite colength in a free R-module F. Write F / M ≅ I / J, where J ⊂ I are m-primary ideals of R. We first investigate the colength ℓ (R / a) of any m-primary ideal a and its Hilbert-Samuel multiplicity e (a) using linkage theory. As an application, we establish several multiplicity formulas that express the Buchsbaum-Rim multiplicity of the module M in terms of the Hilbert-Samuel multiplicities of ideals related to I, J and a minimal reduction of M. The motivation comes from work by E. Jones, who applied graphical computations of the Hilbert-Samuel multiplicity to the Buchsbaum-Rim multiplicity [E. Jones, Computations of Buchsbaum-Rim multiplicities, J. Pure Appl. Algebra 162 (2001) 37-52].

原文英語
頁(從 - 到)4413-4425
頁數13
期刊Journal of Algebra
319
發行號11
DOIs
出版狀態已發佈 - 2008 六月 1

ASJC Scopus subject areas

  • Algebra and Number Theory

指紋 深入研究「Buchsbaum-Rim multiplicities as Hilbert-Samuel multiplicities」主題。共同形成了獨特的指紋。

引用此