Bimetallic Ru–Cu tellurido complexes: Controlled synthesis and electrochemical studies of copper halide–TeRu5 and Te2Ru4 clusters

Minghuey Shieh*, Yen Yi Chu, Chia Yeh Miu, Pei Fan Wu, Tsau Ming Zeng


研究成果: 雜誌貢獻期刊論文同行評審

9 引文 斯高帕斯(Scopus)


When [TeRu5(CO)14]2− (1) was treated with 1 equiv. of CuX (X = Cl, Br, I) in THF, mono-CuX–TeRu5 clusters [TeRu5(CO)14CuX]2− (X = Cl, 2a; Br, 2b; I, 2c) were obtained. Clusters 2a–2c consist of an octahedral TeRu5 core, in which one triangular Ru3 plane is capped by a μ3-CuX fragment. For CuX (X = Cl, Br), the reaction of complex 1 with 2 equiv. of CuX in THF at room temperature formed Cu4X2-linked di-TeRu5 clusters [(TeRu5(CO)14)2Cu4X2]2− (X = Cl, 3a; Br, 3b), while the same reaction in MeCN at −35 °C produced bis-CuX–TeRu5 complexes [TeRu5(CO)14(CuX)2]2− (X = Cl, 4a; Br, 4b). X-Ray analysis showed that 4b displays a TeRu5 core with two adjacent Ru3 triangles each capped by a μ3-CuBr ligand while 3b has two TeRu5 cores that are linked by a μ6-Cu4Br2 moiety. Clusters 4a and 4b underwent coupling reactions in THF to yield clusters 3a and 3b, and easily transformed to bis-CuX–Te2Ru4 clusters [Te2Ru4(CO)10(CuX)2]2− (X = Cl, 5a; X = Br, 5b) in MeCN. On the other hand, the reaction of 1 with 2 equiv. of CuI in THF directly produced the bis-CuI–Te2Ru4 cluster [Te2Ru4(CO)10(CuI)2]2− (5c). The nature, stability, stepwise cluster transformation, and electrochemistry of these CuX-incorporated TeRu5- and Te2Ru4-based complexes are discussed systematically. In particular, the effects of CuX and the metal cores (TeRu5 vs. Te2Ru4) on the resultant Te–Ru–Cu clusters are further elucidated by molecular orbital calculations at the B3LYP level of the density functional theory.

頁(從 - 到)1492-1503
期刊Journal of the Chemical Society. Dalton Transactions
出版狀態已發佈 - 2010 一月 26

ASJC Scopus subject areas

  • 化學 (全部)


深入研究「Bimetallic Ru–Cu tellurido complexes: Controlled synthesis and electrochemical studies of copper halide–TeRu<sub>5</sub> and Te<sub>2</sub>Ru<sub>4</sub> clusters」主題。共同形成了獨特的指紋。