摘要
Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, multiscale permutation entropy (MPE) was introduced for feature extraction from faulty bearing vibration signals. After extracting feature vectors by MPE, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. Simulation results demonstrated that the proposed method is a very powerful algorithm for bearing fault diagnosis and has much better performance than the methods based on single scale permutation entropy (PE) and multiscale entropy (MSE).
原文 | 英語 |
---|---|
頁(從 - 到) | 1343-1356 |
頁數 | 14 |
期刊 | Entropy |
卷 | 14 |
發行號 | 8 |
DOIs | |
出版狀態 | 已發佈 - 2012 8月 |
ASJC Scopus subject areas
- 資訊系統
- 電氣與電子工程
- 一般物理與天文學
- 數學物理學
- 物理與天文學(雜項)