Arrayed porous polydimethylsiloxane/barium titanate microstructures for high-sensitivity flexible capacitive pressure sensors

Chii Rong Yang, Liang Jyun Wang, Shih Feng Tseng*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

Flexible and wearable devices have been gaining attention in recent years. Compared with other types of pressure sensors, capacitive pressure sensors provide more advantages including simple structure, high stability and reliability, and lower power consumption. This study proposed the flexible capacitive pressure sensors with a double dielectric layer of a porous micro-pillar composite structure of polydimethylsiloxane (PDMS) as the dielectric layer. To further enhance the sensitivity, barium titanate (BT) particles were mixed in the PDMS due to their high relative permittivity. Moreover, finite element analysis (FEA) was utilized to simulate the displacement of the dielectric layer under applying external pressure. The FEA simulation results showed that the proposed structure of the dielectric layer could effectively enhance the sensitivity of the flexible capacitive pressure sensor. Furthermore, the flexible capacitive pressure sensor demonstrates a superb performance with a high sensitivity of 7.847 kPa−1, a low detection limit of 0.21 Pa, and a fast response and release time of 20 ms and 25 ms. The developed sensors have an excellent sensing capability and can be applied widely for monitoring of heartbeat, sensing of the robot arm, measuring of floor height, detecting of weights of objects, and real-time monitoring of healthcare.

原文英語
頁(從 - 到)13144-13153
頁數10
期刊Ceramics International
48
發行號9
DOIs
出版狀態已發佈 - 2022 5月 1

ASJC Scopus subject areas

  • 電子、光磁材料
  • 陶瓷和複合材料
  • 製程化學與技術
  • 表面、塗料和薄膜
  • 材料化學

指紋

深入研究「Arrayed porous polydimethylsiloxane/barium titanate microstructures for high-sensitivity flexible capacitive pressure sensors」主題。共同形成了獨特的指紋。

引用此