Area of Catalan paths on a checkerboard

Szu En Cheng*, Sen Peng Eu, Tung Shan Fu

*此作品的通信作者

研究成果: 會議貢獻類型會議論文同行評審

摘要

It is known that the area of all Catalan paths of length n is equal to 4n - ( 2n+1), which coincides with the number of inversions of all 321-avoiding permutations of length n + 1. In this paper, a bijection between the two sets is established. Meanwhile, a number of interesting bijective results that pave the way to the required bijection are presented.

原文英語
頁面387-397
頁數11
出版狀態已發佈 - 2006
對外發佈
事件18th Annual International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2006 - San Diego, CA, 美国
持續時間: 2006 6月 192006 6月 23

其他

其他18th Annual International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2006
國家/地區美国
城市San Diego, CA
期間2006/06/192006/06/23

ASJC Scopus subject areas

  • 代數與數理論

指紋

深入研究「Area of Catalan paths on a checkerboard」主題。共同形成了獨特的指紋。

引用此