AnimeTransGAN: Animation Image Super-Resolution Transformer via Deep Generative Adversarial Network

Chang De Peng, Li Wei Kang*

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

摘要

To achieve better visual experiences for watching classic animations displayed on high-end displays, such as UHDTV (ultra high-definition television), a novel deep learning framework designed for animation image super-resolution (SR) is proposed in this paper. To overcome the possible drawbacks that GAN (generative adversarial network)-based SR models may not recover sufficient image details while transformer-based SR models may produce over-blurred/over-sharpened images, we propose a novel GAN-based model for animation image SR, where we integrate the superior detail recovery capability of transformer models for image SR, and the discriminative ability of the U-Net-based discriminator for determining the reality of generated images, denoted by AnimeTransGAN. Our experimental results demonstrate that the proposed AnimeTransGAN model quantitatively and qualitatively achieves better SR performances for animation images, compared with the state-of-the-art methods.

原文英語
主出版物標題GCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics
發行者Institute of Electrical and Electronics Engineers Inc.
頁面250-251
頁數2
ISBN(電子)9798350340181
DOIs
出版狀態已發佈 - 2023
事件12th IEEE Global Conference on Consumer Electronics, GCCE 2023 - Nara, 日本
持續時間: 2023 10月 102023 10月 13

出版系列

名字GCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics

會議

會議12th IEEE Global Conference on Consumer Electronics, GCCE 2023
國家/地區日本
城市Nara
期間2023/10/102023/10/13

ASJC Scopus subject areas

  • 人工智慧
  • 能源工程與電力技術
  • 電氣與電子工程
  • 安全、風險、可靠性和品質
  • 儀器
  • 原子與分子物理與光學

指紋

深入研究「AnimeTransGAN: Animation Image Super-Resolution Transformer via Deep Generative Adversarial Network」主題。共同形成了獨特的指紋。

引用此