Analysis of STCC eddies using the Okubo-Weiss parameter on model and satellite data Topical Collection on the 5th International Workshop on Modelling the Ocean (IWMO) in Bergen, Norway 17-20 June 2013

Yu-Lin Chang, Lie Yauw Oey

研究成果: 雜誌貢獻文章

19 引文 斯高帕斯(Scopus)

摘要

The North Pacific Subtropical Counter Current (STCC) is a weak zonal current comprising of a weak eastward flow near the surface (with speeds of less than 0.1 m/s and a thickness of approximately 50-100 m) and westward flow (the North Equatorial Current) beneath. Previous studies (e.g., Qiu J Phys Oceanogr 29: 2471-2486, 1999) have shown that the STCC is baroclinically unstable. Therefore, despite its weak mean speeds, nonlinear STCC eddies with diameters ~300 km or larger and rotational speeds exceeding the eddy propagation speeds develop (Samelson J Phys Oceanogr 27: 2645-2662, 1997; Chelton et al. Prog Oceanogr 91: 167-216, 2011). In this study, the authors present numerical experiments to describe and explain the instability and eddy-generation processes of the STCC and the seasonal variation. Emphasis is on finite-amplitude eddies which are analyzed based on the parameter of Okubo (Deep-Sea Res 17: 445-454, 1970) and Weiss (Physica D 48: 273-294, 1991). The temperature and salinity distribution in March and April offer the favorable condition for eddies to grow, while September and October are unfavorable seasons for the generation of eddies. STCC is maintained not only by subsurface front but also by the sea surface temperature (SST) front. The seasonal variation of the vertical shear is dominated by the seasonal surface STCC velocity. The SST front enhances the instability and lead to the faster growth of STCC eddies in winter and spring. The near-surface processes are therefore crucial for the STCC system.

原文英語
頁(從 - 到)259-271
頁數13
期刊Ocean Dynamics
64
發行號2
DOIs
出版狀態已發佈 - 2014 二月 1

ASJC Scopus subject areas

  • Oceanography

指紋 深入研究「Analysis of STCC eddies using the Okubo-Weiss parameter on model and satellite data Topical Collection on the 5th International Workshop on Modelling the Ocean (IWMO) in Bergen, Norway 17-20 June 2013」主題。共同形成了獨特的指紋。

  • 引用此