Analysis of nonsmooth vector-valued functions associated with second-order cones

Jein Shan Chen*, Xin Chen, Paul Tseng

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

86 引文 斯高帕斯(Scopus)

摘要

Let [InlineMediaObject not available: see fulltext.] be the Lorentz/second-order cone in [InlineMediaObject not available: see fulltext.]. For any function f from [InlineMediaObject not available: see fulltext.] to [InlineMediaObject not available: see fulltext.], one can define a corresponding function f soc(x) on [InlineMediaObject not available: see fulltext.] by applying f to the spectral values of the spectral decomposition of x [InlineMediaObject not available: see fulltext.] with respect to [InlineMediaObject not available: see fulltext.]. We show that this vector-valued function inherits from f the properties of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differentiability, continuous differentiability, as well as (ρ-order) semismoothness. These results are useful for designing and analyzing smoothing methods and nonsmooth methods for solving second-order cone programs and complementarity problems.

原文英語
頁(從 - 到)95-117
頁數23
期刊Mathematical Programming
101
發行號1
DOIs
出版狀態已發佈 - 2004 9月
對外發佈

ASJC Scopus subject areas

  • 軟體
  • 數學(全部)

指紋

深入研究「Analysis of nonsmooth vector-valued functions associated with second-order cones」主題。共同形成了獨特的指紋。

引用此