An epistemic framework for scientific reasoning in informal contexts

研究成果: 書貢獻/報告類型篇章

13 引文 斯高帕斯(Scopus)


Introduction In the science education community, there is a growing consensus that in addition to conceptual knowledge, we need to introduce learners to another important facet of science, that is, how we create new knowledge. In other words, students should be better educated in the use of certain established ways of thinking in science (e.g., Duschl, 1990; Lawson., 2000). The “certain established ways of thinking in science” are commonly referred to as scientific reasoning, which is portrayed by philosophers of science as a process of argumentation (Giere, 1991; Seigel, 1988; Toulmin, 1958), because it involves the evaluation of evidence to support a theory or claim. In schools, scientific reasoning is usually presented in domain-specific contexts such as physics, chemistry, life sciences, and so forth. Nevertheless, as Seigel (1988) has noted, the commitment to evidence is an imperative trait of rational reasoning in many disciplines, although the form it takes may vary with the disciplines. Even in everyday situations, testing of the possibilities with accountable evidence or reasons and searching for possibilities are critical for decision-making (Baron 1988; Kuhn, 1991; Lawson., 2000; Perkins and Salman, 1989). Hence, although scientific reasoning is often discussed within specific knowledge domains, as Kuhn (1993) pointed out, it represents a domain-independent mode of argumentative reasoning. The development of scientific reasoning has been widely discussed in psychological research (Zimmerman, 2000). Nevertheless, most studies are placed in domain-specific contexts and deal with well-structured problems with only a few exceptions (Kuhn, 1991, 1993).

主出版物標題Personal Epistemology in the Classroom
發行者Cambridge University Press
出版狀態已發佈 - 2010 1月 1

ASJC Scopus subject areas

  • 心理學(全部)


深入研究「An epistemic framework for scientific reasoning in informal contexts」主題。共同形成了獨特的指紋。