摘要
Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition processes, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, which is compatible with the interferometers having long arms like the next generation GW detectors. The features of the new ALS are that the control configuration is simpler than those of previous ones and that it is not necessary to lay optical fibers for the ALS along the kilometer-long arms of the detector. Along with simulations of its noise performance, an experimental test of the new ALS was performed utilizing a single arm cavity of KAGRA. This paper presents the first results of the test where we demonstrated that lock acquisition of the arm cavity was achieved using the new ALS. We also demonstrated that the root mean square of residual noise was measured to be 8.2 Hz in units of frequency, which is smaller than the linewidth of the arm cavity and thus low enough to lock the full interferometer of KAGRA in a repeatable and reliable manner.
原文 | 英語 |
---|---|
文章編號 | 035004 |
期刊 | Classical and Quantum Gravity |
卷 | 37 |
發行號 | 3 |
DOIs | |
出版狀態 | 已發佈 - 2020 一月 13 |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)
指紋 深入研究「An arm length stabilization system for KAGRA and future gravitational-wave detectors」主題。共同形成了獨特的指紋。
引用此
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
An arm length stabilization system for KAGRA and future gravitational-wave detectors. / Akutsu, T.; Ando, M.; Arai, K.; Arai, K.; Arai, Y.; Araki, S.; Araya, A.; Aritomi, N.; Aso, Y.; Bae, S.; Bae, Y.; Baiotti, L.; Bajpai, R.; Barton, M. A.; Cannon, K.; Capocasa, E.; Chan, M.; Chen, C. S.; Chen, K.; Chen, Y.; Chu, H.; Chu, Y. K.; Doi, K.; Eguchi, S.; Enomoto, Y.; Flaminio, R.; Fujii, Y.; Fukunaga, M.; Fukushima, M.; Ge, G. G.; Hagiwara, A.; Haino, S.; Hasegawa, K.; Hayakawa, H.; Hayama, K.; Himemoto, Y.; Hiranuma, Y.; Hirata, N.; Hirose, E.; Hong, Z.; Hsieh, B. H.; Huang, G. Z.; Huang, P. W.; Huang, Y.; Ikenoue, B.; Imam, S.; Inayoshi, K.; Inoue, Y.; Ioka, K.; Itoh, Y.; Izumi, K.; Jung, K.; Jung, P.; Kajita, T.; Kamiizumi, M.; Kanbara, S.; Kanda, N.; Kang, G.; Kawaguchi, K.; Kawai, N.; Kawasaki, T.; Kim, C.; Kim, J. C.; Kim, W. S.; Kim, Y. M.; Kimura, N.; Kita, N.; Kitazawa, H.; Kojima, Y.; Kokeyama, K.; Komori, K.; Kong, A. K.H.; Kotake, K.; Kozakai, C.; Kozu, R.; Kumar, R.; Kume, J.; Kuo, C.; Kuo, H. S.; Kuroyanagi, S.; Kusayanagi, K.; Kwak, K.; Lee, H. W.; Lee, H. W.; Lee, R.; Leonardi, M.; Lin, L. C.C.; Lin, C. Y.; Lin, F. L.; Liu, G. C.; Luo, L. W.; Marchio, M.; Michimura, Y.; Mio, N.; Miyakawa, O.; Miyamoto, A.; Miyazaki, Y.; Miyo, K.; Miyoki, S.; Morisaki, S.; Moriwaki, Y.; Musha, M.; Nagano, K.; Nagano, S.; Nakamura, K.; Nakano, H.; Nakano, M.; Nakashima, R.; Narikawa, T.; Negishi, R.; Ni, W. T.; Nishizawa, A.; Obuchi, Y.; Ogaki, W.; Oh, J. J.; Oh, S. H.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Ohmae, N.; Okutomi, K.; Oohara, K.; Ooi, C. P.; Oshino, S.; Pan, K. C.; Pang, H.; Park, J.; Peña Arellano, F. E.; Pinto, I.; Sago, N.; Saito, S.; Saito, Y.; Sakai, K.; Sakai, Y.; Sakuno, Y.; Sato, S.; Sato, T.; Sawada, T.; Sekiguchi, T.; Sekiguchi, Y.; Shibagaki, S.; Shimizu, R.; Shimoda, T.; Shimode, K.; Shinkai, H.; Shishido, T.; Shoda, A.; Somiya, K.; Son, E. J.; Sotani, H.; Sugimoto, R.; Suzuki, T.; Suzuki, T.; Tagoshi, H.; Takahashi, H.; Takahashi, R.; Takamori, A.; Takano, S.; Takeda, H.; Takeda, M.; Tanaka, H.; Tanaka, K.; Tanaka, K.; Tanaka, T.; Tanaka, T.; Tanioka, S.; Tapia San Martin, E. N.; Tatsumi, D.; Telada, S.; Tomaru, T.; Tomigami, Y.; Tomura, T.; Travasso, F.; Trozzo, L.; Tsang, T.; Tsubono, K.; Tsuchida, S.; Tsuzuki, T.; Tuyenbayev, D.; Uchikata, N.; Uchiyama, T.; Ueda, A.; Uehara, T.; Ueno, K.; Ueshima, G.; Uraguchi, F.; Ushiba, T.; van Putten, M. H.P.M.; Vocca, H.; Wang, J.; Wu, C.; Wu, H.; Wu, S.; Xu, W. R.; Yamada, T.; Yamamoto, K.; Yamamoto, K.; Yamamoto, T.; Yokogawa, K.; Yokoyama, J.; Yokozawa, T.; Yoshioka, T.; Yuzurihara, H.; Zeidler, S.; Zhao, Y.; Zhu, Z. H.
於: Classical and Quantum Gravity, 卷 37, 編號 3, 035004, 13.01.2020.研究成果: 雜誌貢獻 › 文章 › 同行評審
}
TY - JOUR
T1 - An arm length stabilization system for KAGRA and future gravitational-wave detectors
AU - Akutsu, T.
AU - Ando, M.
AU - Arai, K.
AU - Arai, K.
AU - Arai, Y.
AU - Araki, S.
AU - Araya, A.
AU - Aritomi, N.
AU - Aso, Y.
AU - Bae, S.
AU - Bae, Y.
AU - Baiotti, L.
AU - Bajpai, R.
AU - Barton, M. A.
AU - Cannon, K.
AU - Capocasa, E.
AU - Chan, M.
AU - Chen, C. S.
AU - Chen, K.
AU - Chen, Y.
AU - Chu, H.
AU - Chu, Y. K.
AU - Doi, K.
AU - Eguchi, S.
AU - Enomoto, Y.
AU - Flaminio, R.
AU - Fujii, Y.
AU - Fukunaga, M.
AU - Fukushima, M.
AU - Ge, G. G.
AU - Hagiwara, A.
AU - Haino, S.
AU - Hasegawa, K.
AU - Hayakawa, H.
AU - Hayama, K.
AU - Himemoto, Y.
AU - Hiranuma, Y.
AU - Hirata, N.
AU - Hirose, E.
AU - Hong, Z.
AU - Hsieh, B. H.
AU - Huang, G. Z.
AU - Huang, P. W.
AU - Huang, Y.
AU - Ikenoue, B.
AU - Imam, S.
AU - Inayoshi, K.
AU - Inoue, Y.
AU - Ioka, K.
AU - Itoh, Y.
AU - Izumi, K.
AU - Jung, K.
AU - Jung, P.
AU - Kajita, T.
AU - Kamiizumi, M.
AU - Kanbara, S.
AU - Kanda, N.
AU - Kang, G.
AU - Kawaguchi, K.
AU - Kawai, N.
AU - Kawasaki, T.
AU - Kim, C.
AU - Kim, J. C.
AU - Kim, W. S.
AU - Kim, Y. M.
AU - Kimura, N.
AU - Kita, N.
AU - Kitazawa, H.
AU - Kojima, Y.
AU - Kokeyama, K.
AU - Komori, K.
AU - Kong, A. K.H.
AU - Kotake, K.
AU - Kozakai, C.
AU - Kozu, R.
AU - Kumar, R.
AU - Kume, J.
AU - Kuo, C.
AU - Kuo, H. S.
AU - Kuroyanagi, S.
AU - Kusayanagi, K.
AU - Kwak, K.
AU - Lee, H. W.
AU - Lee, H. W.
AU - Lee, R.
AU - Leonardi, M.
AU - Lin, L. C.C.
AU - Lin, C. Y.
AU - Lin, F. L.
AU - Liu, G. C.
AU - Luo, L. W.
AU - Marchio, M.
AU - Michimura, Y.
AU - Mio, N.
AU - Miyakawa, O.
AU - Miyamoto, A.
AU - Miyazaki, Y.
AU - Miyo, K.
AU - Miyoki, S.
AU - Morisaki, S.
AU - Moriwaki, Y.
AU - Musha, M.
AU - Nagano, K.
AU - Nagano, S.
AU - Nakamura, K.
AU - Nakano, H.
AU - Nakano, M.
AU - Nakashima, R.
AU - Narikawa, T.
AU - Negishi, R.
AU - Ni, W. T.
AU - Nishizawa, A.
AU - Obuchi, Y.
AU - Ogaki, W.
AU - Oh, J. J.
AU - Oh, S. H.
AU - Ohashi, M.
AU - Ohishi, N.
AU - Ohkawa, M.
AU - Ohmae, N.
AU - Okutomi, K.
AU - Oohara, K.
AU - Ooi, C. P.
AU - Oshino, S.
AU - Pan, K. C.
AU - Pang, H.
AU - Park, J.
AU - Peña Arellano, F. E.
AU - Pinto, I.
AU - Sago, N.
AU - Saito, S.
AU - Saito, Y.
AU - Sakai, K.
AU - Sakai, Y.
AU - Sakuno, Y.
AU - Sato, S.
AU - Sato, T.
AU - Sawada, T.
AU - Sekiguchi, T.
AU - Sekiguchi, Y.
AU - Shibagaki, S.
AU - Shimizu, R.
AU - Shimoda, T.
AU - Shimode, K.
AU - Shinkai, H.
AU - Shishido, T.
AU - Shoda, A.
AU - Somiya, K.
AU - Son, E. J.
AU - Sotani, H.
AU - Sugimoto, R.
AU - Suzuki, T.
AU - Suzuki, T.
AU - Tagoshi, H.
AU - Takahashi, H.
AU - Takahashi, R.
AU - Takamori, A.
AU - Takano, S.
AU - Takeda, H.
AU - Takeda, M.
AU - Tanaka, H.
AU - Tanaka, K.
AU - Tanaka, K.
AU - Tanaka, T.
AU - Tanaka, T.
AU - Tanioka, S.
AU - Tapia San Martin, E. N.
AU - Tatsumi, D.
AU - Telada, S.
AU - Tomaru, T.
AU - Tomigami, Y.
AU - Tomura, T.
AU - Travasso, F.
AU - Trozzo, L.
AU - Tsang, T.
AU - Tsubono, K.
AU - Tsuchida, S.
AU - Tsuzuki, T.
AU - Tuyenbayev, D.
AU - Uchikata, N.
AU - Uchiyama, T.
AU - Ueda, A.
AU - Uehara, T.
AU - Ueno, K.
AU - Ueshima, G.
AU - Uraguchi, F.
AU - Ushiba, T.
AU - van Putten, M. H.P.M.
AU - Vocca, H.
AU - Wang, J.
AU - Wu, C.
AU - Wu, H.
AU - Wu, S.
AU - Xu, W. R.
AU - Yamada, T.
AU - Yamamoto, K.
AU - Yamamoto, K.
AU - Yamamoto, T.
AU - Yokogawa, K.
AU - Yokoyama, J.
AU - Yokozawa, T.
AU - Yoshioka, T.
AU - Yuzurihara, H.
AU - Zeidler, S.
AU - Zhao, Y.
AU - Zhu, Z. H.
N1 - Funding Information: This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, MEXT Grant-in-Aid for Scientific Research on Innovative Areas 24103005, JSPS Core-to-Core Program, A. Advanced Research Networks, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, the LIGO project, and the Virgo project.
PY - 2020/1/13
Y1 - 2020/1/13
N2 - Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition processes, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, which is compatible with the interferometers having long arms like the next generation GW detectors. The features of the new ALS are that the control configuration is simpler than those of previous ones and that it is not necessary to lay optical fibers for the ALS along the kilometer-long arms of the detector. Along with simulations of its noise performance, an experimental test of the new ALS was performed utilizing a single arm cavity of KAGRA. This paper presents the first results of the test where we demonstrated that lock acquisition of the arm cavity was achieved using the new ALS. We also demonstrated that the root mean square of residual noise was measured to be 8.2 Hz in units of frequency, which is smaller than the linewidth of the arm cavity and thus low enough to lock the full interferometer of KAGRA in a repeatable and reliable manner.
AB - Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition processes, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, which is compatible with the interferometers having long arms like the next generation GW detectors. The features of the new ALS are that the control configuration is simpler than those of previous ones and that it is not necessary to lay optical fibers for the ALS along the kilometer-long arms of the detector. Along with simulations of its noise performance, an experimental test of the new ALS was performed utilizing a single arm cavity of KAGRA. This paper presents the first results of the test where we demonstrated that lock acquisition of the arm cavity was achieved using the new ALS. We also demonstrated that the root mean square of residual noise was measured to be 8.2 Hz in units of frequency, which is smaller than the linewidth of the arm cavity and thus low enough to lock the full interferometer of KAGRA in a repeatable and reliable manner.
KW - Gravitational-wave detector
KW - Interferometer
KW - Multi-colour
UR - http://www.scopus.com/inward/record.url?scp=85080069599&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85080069599&partnerID=8YFLogxK
U2 - 10.1088/1361-6382/ab5c95
DO - 10.1088/1361-6382/ab5c95
M3 - Article
AN - SCOPUS:85080069599
VL - 37
JO - Classical and Quantum Gravity
JF - Classical and Quantum Gravity
SN - 0264-9381
IS - 3
M1 - 035004
ER -