Algorithms on parametric decomposition of monomial ideals

Jung Chen Liu*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

Heinzer, Mirbagheri, Ratliff, and Shah investigate parametric decomposition of monomial ideals on a regular sequence of a commutative ring R with identity 1 and prove that if every finite intersection of monomial ideals in R is again a monomial ideal, then each monomial ideal has a unique irredundant parametric decomposition. Sturmfels, Trung, and Vogels prove a similar result without the uniqueness. Bayer, Peeva, and Strumfels study generic monomial ideals, that is monomial ideals in the polynomial ring such that no variable appears with the same nonzero exponent in two different minimal generators, and for these ideals they prove the uniqueness of the irredundant irreducible decompositions and give an algorithm to construct this unique irredundant irreducible decomposition. In this paper, we present three algorithms for finding the unique irredundant irreducible decomposition of any monomial ideal.

原文英語
頁(從 - 到)3435-3456
頁數22
期刊Communications in Algebra
30
發行號7
DOIs
出版狀態已發佈 - 2002 7月

ASJC Scopus subject areas

  • 代數與數理論

指紋

深入研究「Algorithms on parametric decomposition of monomial ideals」主題。共同形成了獨特的指紋。

引用此