Advanced Understanding of Sea Surface Cooling Off Northeastern Taiwan to Tropical Cyclone by Using Numerical Modeling

Hsin Ju Wu, Zhe Wen Zheng*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

摘要

From 2001 to 2020, three typhoons with similar moving paths and intensities were found to trigger markedly different cooling off northeastern Taiwan. They were typhoons Utor (2001), Nuri (2008), and Hagupit (2008), which led to maximum sea surface temperature (SST) cooling temperatures of 8.8, 2.7, and 1.4 °C, respectively. The drastic cooling discrepancy implies that the existing understanding of the key mechanism leading to the cooling off northeastern Taiwan could be insufficient. For further exploring the key reason(s) contributing to the marked discrepancy, a regional oceanic modeling system (ROMS) was used to reconstruct the background oceanic environment corresponding to three typhoon passages. Results show that the wide radius of maximum winds of typhoon Utor contributes to the strongest SST cooling by enhancing the Kuroshio intrusion (KI) onto the shelf northeast of Taiwan. Heat budget diagnostics explain why including tidal forcing can substantially promote SST cooling. The process was associated mainly with a stronger vertical advection tied to the influence of de-stratification by tidal mixing. Finally, warmer Taiwan Strait currents, driven by wind forcing the typhoons to pass zonally through the north South China Sea, intruded clockwise into the Longdong coast and accelerated the recovery of sea surface cooling around Longdong.

原文英語
文章編號663
期刊Atmosphere
15
發行號6
DOIs
出版狀態已發佈 - 2024 6月

ASJC Scopus subject areas

  • 環境科學(雜項)

指紋

深入研究「Advanced Understanding of Sea Surface Cooling Off Northeastern Taiwan to Tropical Cyclone by Using Numerical Modeling」主題。共同形成了獨特的指紋。

引用此