Adsorption of an Au atom and dimer on a thin Al2O3/NiAl(100) film: Dependence on the thickness of the Al2O3 film

Ching Lun Hsia, Jeng Han Wang, Meng Fan Luo

研究成果: 雜誌貢獻文章同行評審

3 引文 斯高帕斯(Scopus)

摘要

With calculations based on density-functional theory (DFT) we investigated the adsorption of a single Au atom and a dimer on thin Al2O3(001) films supported on NiAl(100). The interaction of the Au adsorbates with the surface was shown to depend on the thickness of the film. The adsorption energy for an Au atom on Al2O3(001)/NiAl(100) of film thickness ≤four atomic layers was significantly enhanced - over three times that on a bulk Al2O3(001) surface, and accompanied with a shortened Au-oxide bond and an uplifted Au-binding Al. The strong Au-surface interaction involved a decreased work function of Al2O3(001)/NiAl(100) and consequently drove charge to transfer from the substrate to the adsorbed Au atom; the charge was transferred from NiAl, through alumina, on monolayer Al2O3(001)/NiAl(100), but directly from alumina on thicker layers. For an Au dimer, both upright (end-on) and flat-lying (side-on) geometries existed. The flat-lying dimer was preferred on mono- and tri-layer alumina films, having a greater adsorption energy but a weakened Au-Au bond, whereas the upright geometry prevailed for films of other thickness, having a weaker adsorption energy and being less charged, similar to that on a bulk Al2O3(001) surface. The results imply an opportunity to control the properties and morphologies of metal clusters supported on an oxide film by tuning its thickness.

原文英語
頁(從 - 到)2642-2652
頁數11
期刊RSC Advances
8
發行號5
DOIs
出版狀態已發佈 - 2018

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

指紋 深入研究「Adsorption of an Au atom and dimer on a thin Al<sub>2</sub>O<sub>3</sub>/NiAl(100) film: Dependence on the thickness of the Al<sub>2</sub>O<sub>3</sub> film」主題。共同形成了獨特的指紋。

引用此