Adaptive Voxelization Strategy for 3D Object Detection

Jyun Hong He, Xiu Zhi Chen, You Shiuan Lin, Chen Yu Yang, Yen Lin Chen*, Hsin Han Chiang

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

摘要

3D object detection techniques rely on features obtained from point cloud data structures to identify and label the frame range of objects. Past techniques of converting point cloud data into voxel grids or image sets would make the data unnecessarily large, and it would be impractical to slice all space into a voxel grid of the same scale for objects of different types and depths. In this paper, the RGB-D depth camera is used to obtain the original point cloud information, and the mature 2D target detection technology and advanced 3D deep learning are used to locate the target. In addition, the voxel grid structure is improved, and the proportion and size of the voxel grid are appropriately adjusted by adopting the method of image category adaptation and spatial depth clustering to obtain more accurate point cloud features and achieve fast and accurate 3D object detection.

原文英語
主出版物標題Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022
發行者Institute of Electrical and Electronics Engineers Inc.
頁面423-424
頁數2
ISBN(電子)9781665470506
DOIs
出版狀態已發佈 - 2022
對外發佈
事件2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022 - Taipei, 臺灣
持續時間: 2022 7月 62022 7月 8

出版系列

名字Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022

會議

會議2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022
國家/地區臺灣
城市Taipei
期間2022/07/062022/07/08

ASJC Scopus subject areas

  • 人工智慧
  • 電腦科學應用
  • 硬體和架構
  • 可再生能源、永續發展與環境
  • 電氣與電子工程
  • 媒體技術
  • 健康資訊學
  • 儀器

指紋

深入研究「Adaptive Voxelization Strategy for 3D Object Detection」主題。共同形成了獨特的指紋。

引用此