Adaptive computation algorithm for simultaneous localization and mapping (SLAM)

Da Wei Kung*, Chen Chien Hsu, Wei Yen Wang, Jacky Baltes

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

摘要

Computationally Efficient SLAM (CESLAM) was proposed to improve the accuracy and runtime efficiency of FastSLAM 1.0 and FastSLAM 2.0. This method adopts the landmark measurement with the maximum likelihood, where the particle state is updated before updating the landmark estimate. Also, CESLAM solves the problem of real-time performance. In this paper, a modified version of CESLAM, called adaptive computation SLAM (ACSLAM), as an adaptive SLAM enhances the localization and mapping accuracy along with better runtime performance. In an empirical evaluation in a rich environment, we show that ACSLAM runs about twice as fast as FastSLAM 2.0 and increases the accuracy of the location estimate by a factor of two.

原文英語
主出版物標題Robot Intelligence Technology and Applications 4 - Results from the 4th International Conference on Robot Intelligence Technology and Applications
編輯Fakhri Karray, Jong-Hwan Kim, Hyun Myung, Jun Jo, Peter Sincak
發行者Springer Verlag
頁面75-83
頁數9
ISBN(列印)9783319312910
DOIs
出版狀態已發佈 - 2017
事件4th International Conference on Robot Intelligence Technology and Applications, RiTA 2015 - Bucheon, 大韓民國
持續時間: 2015 12月 142015 12月 16

出版系列

名字Advances in Intelligent Systems and Computing
447
ISSN(列印)2194-5357

其他

其他4th International Conference on Robot Intelligence Technology and Applications, RiTA 2015
國家/地區大韓民國
城市Bucheon
期間2015/12/142015/12/16

ASJC Scopus subject areas

  • 控制與系統工程
  • 一般電腦科學

指紋

深入研究「Adaptive computation algorithm for simultaneous localization and mapping (SLAM)」主題。共同形成了獨特的指紋。

引用此