摘要
In this paper, an adaptive bound reduced-form genetic algorithm (ABRGA) to tune the control points of B-spline neural networks is proposed. It is developed not only to search for the optimal control points but also to adaptively tune the bounds of the control points of the B-spline neural networks by enlarging the search space of the control points. To improve the searching speed of the reduced-form genetic algorithm (RGA), the ABRGA is derived, in which better bounds of control points of B-spline neural networks are determined and paralleled with the optimal control points searched. It is shown that better efficiency is obtained if the bounds of control points are adjusted properly for the RGA-based B-spline neural networks.
原文 | 英語 |
---|---|
頁(從 - 到) | 2479-2488 |
頁數 | 10 |
期刊 | IEICE Transactions on Information and Systems |
卷 | E87-D |
發行號 | 11 |
出版狀態 | 已發佈 - 2004 11月 |
對外發佈 | 是 |
ASJC Scopus subject areas
- 軟體
- 硬體和架構
- 電腦視覺和模式識別
- 電氣與電子工程
- 人工智慧