A utility-based resource allocation scheme for IEEE 802.11 WLANs via a machine-learning approach

Chiapin Wang*, Wen Hsing Kuo

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

6 引文 斯高帕斯(Scopus)

摘要

The problem of allocating resources in IEEE 802.11 wireless local area networks (WLAN) is challenging due to limited bandwidth, time-varying channel conditions, and especially the distributed channel-access manner. In this paper we propose an intelligent resource allocation scheme that dynamically adjusts medium-access-control (MAC) parameters to tune channel-access opportunities and maximize the total utility. “Intelligent” refers to the capability of our approach to regulate each 802.11 node’s parameters automatically according to the changes of surrounding situations, e.g. channel conditions and number of nodes. Our intelligent allocation scheme uses neural networks to on-line learn the nonlinear function between the adopted MAC parameters and allocated throughput. Based on the learned knowledge, MAC parameters can therefore be dynamically adjusted toward the desired throughput allocation and consequently the maximal WLAN utility. Simulations results demonstrate the effectiveness of our allocation scheme in maximizing the system utility in a varying 802.11 WLAN environment.

原文英語
頁(從 - 到)1743-1758
頁數16
期刊Wireless Networks
20
發行號7
DOIs
出版狀態已發佈 - 2014 10月

ASJC Scopus subject areas

  • 資訊系統
  • 電腦網路與通信
  • 電氣與電子工程

指紋

深入研究「A utility-based resource allocation scheme for IEEE 802.11 WLANs via a machine-learning approach」主題。共同形成了獨特的指紋。

引用此