摘要
We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT.
原文 | 英語 |
---|---|
文章編號 | L20 |
期刊 | Astrophysical Journal Letters |
卷 | 930 |
發行號 | 2 |
DOIs | |
出版狀態 | 已發佈 - 2022 5月 1 |
ASJC Scopus subject areas
- 天文和天體物理學
- 空間與行星科學
指紋
深入研究「A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows」主題。共同形成了獨特的指紋。引用此
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
於: Astrophysical Journal Letters, 卷 930, 編號 2, L20, 01.05.2022.
研究成果: 雜誌貢獻 › 期刊論文 › 同行評審
}
TY - JOUR
T1 - A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows
AU - Georgiev, Boris
AU - Pesce, Dominic W.
AU - Broderick, Avery E.
AU - Wong, George N.
AU - Dhruv, Vedant
AU - Wielgus, Maciek
AU - Gammie, Charles F.
AU - Chan, Chi Kwan
AU - Chatterjee, Koushik
AU - Emami, Razieh
AU - Mizuno, Yosuke
AU - Gold, Roman
AU - Fromm, Christian M.
AU - Ricarte, Angelo
AU - Yoon, Doosoo
AU - Joshi, Abhishek V.
AU - Prather, Ben
AU - Cruz-Osorio, Alejandro
AU - Johnson, Michael D.
AU - Porth, Oliver
AU - Olivares, Héctor
AU - Younsi, Ziri
AU - Rezzolla, Luciano
AU - Vos, Jesse
AU - Qiu, Richard
AU - Nathanail, Antonios
AU - Narayan, Ramesh
AU - Chael, Andrew
AU - Anantua, Richard
AU - Moscibrodzka, Monika
AU - Akiyama, Kazunori
AU - Alberdi, Antxon
AU - Alef, Walter
AU - Algaba, Juan Carlos
AU - Asada, Keiichi
AU - Azulay, Rebecca
AU - Bach, Uwe
AU - Baczko, Anne Kathrin
AU - Ball, David
AU - Baloković, Mislav
AU - Barrett, John
AU - Bauböck, Michi
AU - Benson, Bradford A.
AU - Bintley, Dan
AU - Blackburn, Lindy
AU - Blundell, Raymond
AU - Bouman, Katherine L.
AU - Bower, Geoffrey C.
AU - Boyce, Hope
AU - Bremer, Michael
AU - Brinkerink, Christiaan D.
AU - Brissenden, Roger
AU - Britzen, Silke
AU - Broguiere, Dominique
AU - Bronzwaer, Thomas
AU - Bustamante, Sandra
AU - Byun, Do Young
AU - Carlstrom, John E.
AU - Ceccobello, Chiara
AU - Chatterjee, Shami
AU - Chen, Ming Tang
AU - Chen, Yongjun
AU - Cheng, Xiaopeng
AU - Cho, Ilje
AU - Christian, Pierre
AU - Conroy, Nicholas S.
AU - Conway, John E.
AU - Cordes, James M.
AU - Crawford, Thomas M.
AU - Crew, Geoffrey B.
AU - Cui, Yuzhu
AU - Davelaar, Jordy
AU - De Laurentis, Mariafelicia
AU - Deane, Roger
AU - Dempsey, Jessica
AU - Desvignes, Gregory
AU - Dexter, Jason
AU - Doeleman, Sheperd S.
AU - Dougal, Sean
AU - Dzib, Sergio A.
AU - Eatough, Ralph P.
AU - Falcke, Heino
AU - Farah, Joseph
AU - Fish, Vincent L.
AU - Fomalont, Ed
AU - Ford, H. Alyson
AU - Fraga-Encinas, Raquel
AU - Freeman, William T.
AU - Friberg, Per
AU - Fuentes, Antonio
AU - Galison, Peter
AU - García, Roberto
AU - Gentaz, Olivier
AU - Goddi, Ciriaco
AU - Gómez-Ruiz, Arturo I.
AU - Gómez, José L.
AU - Gu, Minfeng
AU - Gurwell, Mark
AU - Hada, Kazuhiro
AU - Haggard, Daryl
AU - Haworth, Kari
AU - Hecht, Michael H.
AU - Hesper, Ronald
AU - Heumann, Dirk
AU - Ho, Luis C.
AU - Ho, Paul
AU - Honma, Mareki
AU - Huang, Chih Wei L.
AU - Huang, Lei
AU - Hughes, David H.
AU - Ikeda, Shiro
AU - Impellizzeri, C. M.Violette
AU - Inoue, Makoto
AU - Issaoun, Sara
AU - James, David J.
AU - Jannuzi, Buell T.
AU - Janssen, Michael
AU - Jeter, Britton
AU - Jiang, Wu
AU - Jiménez-Rosales, Alejandra
AU - Jorstad, Svetlana
AU - Jung, Taehyun
AU - Karami, Mansour
AU - Karuppusamy, Ramesh
AU - Kawashima, Tomohisa
AU - Keating, Garrett K.
AU - Kettenis, Mark
AU - Kim, Dong Jin
AU - Kim, Jae Young
AU - Kim, Jongsoo
AU - Kim, Junhan
AU - Kino, Motoki
AU - Koay, Jun Yi
AU - Kocherlakota, Prashant
AU - Kofuji, Yutaro
AU - Koch, Patrick M.
AU - Koyama, Shoko
AU - Kramer, Carsten
AU - Kramer, Michael
AU - Krichbaum, Thomas P.
AU - Kuo, Cheng Yu
AU - La Bella, Noemi
AU - Lauer, Tod R.
AU - Lee, Daeyoung
AU - Lee, Sang Sung
AU - Lehner, Luis
AU - Leung, Po Kin
AU - Levis, Aviad
AU - Li, Zhiyuan
AU - Lico, Rocco
AU - Lindahl, Greg
AU - Lindqvist, Michael
AU - Lisakov, Mikhail
AU - Liu, Jun
AU - Liu, Kuo
AU - Liuzzo, Elisabetta
AU - Lo, Wen Ping
AU - Lobanov, Andrei P.
AU - Loinard, Laurent
AU - Lonsdale, Colin J.
AU - Lu, Ru Sen
AU - Mao, Jirong
AU - Marchili, Nicola
AU - Markoff, Sera
AU - Marrone, Daniel P.
AU - Marscher, Alan P.
AU - Martí-Vidal, Iván
AU - Matsushita, Satoki
AU - Matthews, Lynn D.
AU - Menten, Karl M.
AU - Michalik, Daniel
AU - Mizuno, Izumi
AU - Moran, James M.
AU - Moriyama, Kotaro
AU - Müller, Cornelia
AU - Mus, Alejandro
AU - Musoke, Gibwa
AU - Myserlis, Ioannis
AU - Nadolski, Andrew
AU - Nagai, Hiroshi
AU - Nagar, Neil M.
AU - Nakamura, Masanori
AU - Narayanan, Gopal
AU - Natarajan, Iniyan
AU - Fuentes, Santiago Navarro
AU - Neilsen, Joey
AU - Neri, Roberto
AU - Ni, Chunchong
AU - Noutsos, Aristeidis
AU - Nowak, Michael A.
AU - Oh, Junghwan
AU - Okino, Hiroki
AU - Ortiz-León, Gisela N.
AU - Oyama, Tomoaki
AU - Palumbo, Daniel C.M.
AU - Paraschos, Georgios Filippos
AU - Park, Jongho
AU - Parsons, Harriet
AU - Patel, Nimesh
AU - Pen, Ue Li
AU - Piétu, Vincent
AU - Plambeck, Richard
AU - PopStefanija, Aleksandar
AU - Pötzl, Felix M.
AU - Preciado-López, Jorge A.
AU - Pu, Hung Yi
AU - Ramakrishnan, Venkatessh
AU - Rao, Ramprasad
AU - Rawlings, Mark G.
AU - Raymond, Alexander W.
AU - Ripperda, Bart
AU - Roelofs, Freek
AU - Rogers, Alan
AU - Ros, Eduardo
AU - Romero-Cañizales, Cristina
AU - Roshanineshat, Arash
AU - Rottmann, Helge
AU - Roy, Alan L.
AU - Ruiz, Ignacio
AU - Ruszczyk, Chet
AU - Rygl, Kazi L.J.
AU - Sánchez, Salvador
AU - Sánchez-Argüelles, David
AU - Sánchez-Portal, Miguel
AU - Sasada, Mahito
AU - Satapathy, Kaushik
AU - Savolainen, Tuomas
AU - Schloerb, F. Peter
AU - Schonfeld, Jonathan
AU - Schuster, Karl Friedrich
AU - Shao, Lijing
AU - Shen, Zhiqiang
AU - Small, Des
AU - Sohn, Bong Won
AU - SooHoo, Jason
AU - Souccar, Kamal
AU - Sun, He
AU - Tazaki, Fumie
AU - Tetarenko, Alexandra J.
AU - Tiede, Paul
AU - Tilanus, Remo P.J.
AU - Titus, Michael
AU - Torne, Pablo
AU - Traianou, Efthalia
AU - Trent, Tyler
AU - Trippe, Sascha
AU - Turk, Matthew
AU - van Bemmel, Ilse
AU - van Langevelde, Huib Jan
AU - van Rossum, Daniel R.
AU - Wagner, Jan
AU - Ward-Thompson, Derek
AU - Wardle, John
AU - Weintroub, Jonathan
AU - Wex, Norbert
AU - Wharton, Robert
AU - Wiik, Kaj
AU - Witzel, Gunther
AU - Wondrak, Michael F.
AU - Wu, Qingwen
AU - Yamaguchi, Paul
AU - Young, André
AU - Young, Ken
AU - Yuan, Feng
AU - Yuan, Ye Fei
AU - Zensus, J. Anton
AU - Zhang, Shuo
AU - Zhao, Guang Yao
AU - Zhao, Shan Shan
N1 - Publisher Copyright: © 2022. The Author(s)
PY - 2022/5/1
Y1 - 2022/5/1
N2 - We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT.
AB - We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT.
UR - http://www.scopus.com/inward/record.url?scp=85130752472&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130752472&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/ac65eb
DO - 10.3847/2041-8213/ac65eb
M3 - Article
AN - SCOPUS:85130752472
SN - 2041-8205
VL - 930
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 2
M1 - L20
ER -