摘要
The separation of blood plasma by centrifugation can be accelerated by placement of the sample at an angle relative to the direction of the centrifugal force. This geometric effect, which has been known for a century, is due to the Boycott effect, while the enhanced sedimentation of red blood cells (RBCs) in tilted vessels can be attributed to buoyancy-induced convection. Moreover, flow instability would invalidate the traditional predictive model and weaken separation enhancement. While current model considers only the geometric effect, by considering the buoyancy-induced convection and flow instability, we devise a model for the first time enabling the prediction of the optimal tilt angle to achieve the highest separation efficiency. A comparison of our theoretical prediction with the available experimental data shows good agreement. A sensitivity analysis is also conducted to investigate the influence of variation in blood samples on the physical parameters.
原文 | 英語 |
---|---|
文章編號 | 114234 |
期刊 | Sensors and Actuators A: Physical |
卷 | 353 |
DOIs | |
出版狀態 | 已發佈 - 2023 4月 16 |
ASJC Scopus subject areas
- 電子、光磁材料
- 儀器
- 凝聚態物理學
- 表面、塗料和薄膜
- 金屬和合金
- 電氣與電子工程