A Study on Contextualized Language Modeling for Machine Reading Comprehension

Chin Ying Wu, Yung Chang Hsu, Berlin Chen

研究成果: 書貢獻/報告類型會議論文篇章

1 引文 斯高帕斯(Scopus)

摘要

With the recent breakthrough of deep learning technologies, research on machine reading comprehension (MRC) has attracted much attention and found its versatile applications in many use cases. MRC is an important natural language processing (NLP) task aiming to assess the ability of a machine to understand natural language expressions, which is typically operationalized by first asking questions based on a given text paragraph and then receiving machine-generated answers in accordance with the given context paragraph and questions. In this paper, we leverage two novel pretrained language models built on top of Bidirectional Encoder Representations from Transformers (BERT), namely BERT-wwm and MacBERT, to develop effective MRC methods. In addition, we also seek to investigate whether additional incorporation of the categorical information about a context paragraph can benefit MRC or not, which is achieved based on performing context paragraph clustering on the training dataset. On the other hand, an ensemble learning approach is proposed to harness the synergistic power of the aforementioned two BERT-based models so as to furtherpromoteMRCperformance.

原文英語
主出版物標題ROCLING 2021 - Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing
編輯Lung-Hao Lee, Chia-Hui Chang, Kuan-Yu Chen
發行者The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)
頁面48-57
頁數10
ISBN(電子)9789869576949
出版狀態已發佈 - 2021
事件33rd Conference on Computational Linguistics and Speech Processing, ROCLING 2021 - Taoyuan, 臺灣
持續時間: 2021 10月 152021 10月 16

出版系列

名字ROCLING 2021 - Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing

會議

會議33rd Conference on Computational Linguistics and Speech Processing, ROCLING 2021
國家/地區臺灣
城市Taoyuan
期間2021/10/152021/10/16

ASJC Scopus subject areas

  • 語言與語言學
  • 語言和語言學
  • 言語和聽力

指紋

深入研究「A Study on Contextualized Language Modeling for Machine Reading Comprehension」主題。共同形成了獨特的指紋。

引用此